Eosinophilic esophagitis (EoE) is a food allergy-associated inflammatory disease characterized by esophageal eosinophilia. EoE has become increasingly common, but current management strategies are nonspecific. Thus, there is an urgent need to identify specific immunological pathways that could be targeted to treat this disease. EoE is associated with polymorphisms in the gene that encodes thymic stromal lymphopoietin (TSLP), a cytokine that promotes allergic inflammation, but how TSLP might contribute to EoE disease pathogenesis remains unknown. Here, we describe a new mouse model of EoE-like disease that developed independently of IgE but was dependent on TSLP-elicited basophils. Therapeutic TSLP neutralization or basophil depletion also ameliorated established EoE-like disease. Critically, in human subjects with EoE, we observed elevated TSLP levels and exaggerated basophil responses in esophageal biopsies, and a gain-of-function TSLP polymorphism was associated with increased basophil responses. Together, these data suggest that the TSLP-basophil axis could be therapeutically targeted to treat EoE.
We combine diffuse optical and correlation spectroscopies to simultaneously measure the oxyhemoglobin and deoxyhemoglobin concentration and blood flow in an adult human brain during sensorimotor stimulation. The observations permit calculation of the relative cerebral metabolic rate of oxygen in the human brain, for the first time to our knowledge, by use of all-optical methods. The feasibility for noninvasive optical measurement of blood flow through the skull of an adult brain is thus demonstrated, and the clinical potential of this hybrid, all-optical noninvasive, methodology can now be explored.
We have employed near-infrared optical methods to measure noninvasively the dynamics of muscle blood flow and oxygen saturation (StO2) during cuff occlusion and plantar flexion exercise. Relative muscle oxygen consumption (rVO2) was also computed from these data. Diffuse correlation spectroscopy provides information about blood flow, and diffuse reflectance spectroscopy provides information about blood oxygenation. Ten healthy subjects and one patient with peripheral arterial disease (PAD) were studied during 3-min arterial cuff occlusion of arm and leg, and during 1-min plantar flexion exercise. Signals from different layers (cutaneous tissues and muscles) during cuff occlusion were differentiated, revealing strong hemodynamic responses from muscle layers. During exercise in healthy legs, the observed approximately 4.7 fold increase in relative blood flow (rBF) was significantly lower than the corresponding increase in rVO2 (approximately 7 fold). The magnitudes of rBF and rVO2 during exercise in the PAD patient were approximately 1/2 of the healthy controls, and the StO2 recovery time was twice that of the controls. The hybrid instrument improves upon current technologies for measuring muscle responses by simultaneously measuring rBF and StO2. The instrument thus provides a method for evaluation of microcirculation and muscle metabolism in patients with vascular diseases.
Background-This study assesses the utility of a hybrid optical instrument for noninvasive transcranial monitoring in the neurointensive care unit. The instrument is based on diffuse correlation spectroscopy (DCS) for measurement of cerebral blood flow (CBF), and near-infrared spectroscopy (NIRS) for measurement of oxy-and deoxy-hemoglobin concentration. DCS/NIRS measurements of CBF and oxygenation from frontal lobes are compared with concurrent xenon-enhanced computed tomography (XeCT) in patients during induced blood pressure changes and carbon dioxide arterial partial pressure variation.
Purpose:To monitor tumor blood flow noninvasively during photodynamic therapy (PDT) and to correlate flow responses with therapeutic efficacy. Experimental Design: Diffuse correlation spectroscopy (DCS) was used to measure blood flow continuously in radiation-induced fibrosarcoma murine tumors during Photofrin (5 mg/kg)/ PDT (75 mW/cm 2 ,135 J/cm 2 ). Relative blood flow (rBF; i.e., normalized to preillumination values) was compared with tumor perfusion as determined by power Doppler ultrasound and was correlated with treatment durability, defined as the time of tumor growth to a volume of 400 mm 3 . Broadband diffuse reflectance spectroscopy concurrently quantified tumor hemoglobin oxygen saturation (SO 2 ). Results: DCS and power Doppler ultrasound measured similar flow decreases in animals treated with identical protocols. DCS measurement of rBF during PDT revealed a series of PDT-induced peaks and declines dominated by an initial steep increase (average F SE: 168.1 F 39.5%) and subsequent decrease (59.2 F 29.1%). The duration (interval time; range, 2.2-15.6 minutes) and slope (flow reduction rate; range, 4.4 -45.8% minute
À1) of the decrease correlated significantly (P = 0.0001and 0.0002, r 2 = 0.79 and 0.67, respectively) with treatment durability. A positive, significant (P = 0.016, r 2 = 0.50) association between interval time and time-to-400 mm 3 was also detected in animals with depressed pre-PDT blood flow due to hydralazine administration. At 3 hours after PDT, rBF and SO 2 were predictive (P V 0.015) of treatment durability. Conclusion: These data suggest a role for DCS in real-time monitoring of PDT vascular response as an indicator of treatment efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.