Expanded polyglutamine (polyQ) tracts are associated with the induction of protein aggregation and cause cytotoxicity in nine different neurodegenerative disorders. Here, we report that ubiquilin suppresses polyQ-induced protein aggregation and toxicity in cells and in an animal model of Huntington's disease. Overexpression of ubiquilin in HeLa cells and primary neurons reduced aggregation of polyQ-containing proteins and cell death induced by overexpression of a green fluorescent protein (GFP)-huntingtin fusion protein containing 74 polyQ repeats [GFP-Htt(Q74)], in a dose-dependent manner. Moreover, overexpression of ubiquilin suppressed oxidative stress-induced cell death in HeLa cell lines stably expressing GFP-Htt(Q74). In contrast, knockdown of ubiquilin expression in these cell lines was associated with increases in DNA fragmentation, caspase activation, GFP-fusion protein aggregation, and cell death. Caenorhabditis elegans lines expressing GFP-Htt fusion proteins in body wall muscle displayed a polyQ repeat length-dependent decrease in body movement compared with wild-type animals. RNA interference of the C. elegans ubiquilin gene exacerbated the motility defect, whereas overexpression of ubiquilin prevented, and could rescue, loss of worm movement induced by overexpression of GFP-Htt(Q55). These results suggest that ubiquilin might be a novel therapeutic target for treating polyQ diseases.
Ubiquitin regulator-X (UBX) is a discrete protein domain that binds p97/valosin-containing protein (VCP), a molecular chaperone involved in diverse cell processes, including endoplasmic-reticulum-associated protein degradation (ERAD). Here we characterize a human UBX-containing protein, UBXD2, that is highly conserved in mammals, which we have renamed erasin. Biochemical fractionation, immunofluorescence and electron microscopy, and protease protection experiments suggest that erasin is an integral membrane protein of the endoplasmic reticulum and nuclear envelope with both its N- and C-termini facing the cytoplasm or nucleoplasm. Localization of GFP-tagged deletion derivatives of erasin in HeLa cells revealed that a single 21-amino-acid sequence located near the C-terminus is necessary and sufficient for localization of erasin to the endoplasmic reticulum. Immunoprecipitation and GST-pulldown experiments confirmed that erasin binds p97/VCP via its UBX domain. Additional immunoprecipitation assays indicated that erasin exists in a complex with other p97/VCP-associated factors involved in ERAD. Overexpression of erasin enhanced the degradation of the ERAD substrate CD3δ, whereas siRNA-mediated reduction of erasin expression almost completely blocked ERAD. Erasin protein levels were increased by endoplasmic reticulum stress. Immunohistochemical staining of brain tissue from patients with Alzheimer's disease and control subjects revealed that erasin accumulates preferentially in neurons undergoing neurofibrillary degeneration in Alzheimer's disease. These results suggest that erasin may be involved in ERAD and in Alzheimer's disease.
The immunologic and therapeutic effects of intratumoral (IT) delivery of a novel virus-like particle as a lymphoma immunotherapy were evaluated in preclinical studies with human cells and a murine model. CMP-001 is a virus-like particle composed of the Qb bacteriophage capsid protein encapsulating an immunostimulatory CpG-A oligodeoxynucleotide TLR9 agonist. In vitro, CMP-001 induced cytokine production, including IFN-a from plasmacytoid dendritic cells, but only in the presence of anti-Qb Ab. In vivo, IT CMP-001 treatment of murine A20 lymphoma enhanced survival and reduced growth of both injected and contralateral noninjected tumors in a manner dependent on both the ability of mice to generate anti-Qb Ab and the presence of T cells. The combination of IT CMP-001 with systemic anti-PD-1 enhanced antitumor responses in both injected and noninjected tumors. IT CMP-001 alone or combined with anti-PD-1 augmented T cell infiltration in tumor-draining lymph nodes. We conclude IT CMP-001 induces a robust antitumor T cell response in an anti-Qb Ab-dependent manner and results in systemic antitumor T cell effects that are enhanced by anti-PD-1 in a mouse model of B cell lymphoma. Early-phase clinical evaluation of CMP-001 and anti-PD-1 combination therapy in lymphoma will begin shortly, based in part on these results.
Resistance to anti-cancer monoclonal antibody (mAb) therapy remains a clinical challenge. Previous work in our laboratory has shown that T cell help in the form of interleukin-2 maintains long-term NK cell viability and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Lack of such T cell help may be a potential mechanism for resistance to mAb therapy. Here, we evaluate whether concomitant treatment with anti-CD3 × anti-cancer bispecific antibodies (bsAbs) can overcome this resistance by enhancing T cell help, and thereby maintaining long-term NK cell-mediated ADCC. Normal donor peripheral blood mononuclear cells were depleted of T cells, replenished with defined numbers of autologous T cells (from 0.75 to 50%) and co-cultured with mono-/bispecific antibody-treated target tumor cells for up to 7 days. At low T cell concentrations, bsAb-activated T cells (mainly CD4+ T cells) were more effective than resting T cells at maintaining NK cell viability and ADCC. Brief (4 h to 2 day) bsAb exposure was sufficient to enhance long-term ADCC by NK cells. These findings raise the hypothesis that local T cell activation mediated by systemic treatment with anti-CD3 X anti-cancer bsAb may enhance the anti-tumor efficacy of monospecific mAbs that mediate their primary therapeutic effect via NK-mediated ADCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.