To accomplish effective cancer imaging and integrated therapy, the multifunctional nanotheranostic Fe3O4-MTX@HBc core-shell nanoparticles (NPs) were designed. A straightforward method was demonstrated for efficient encapsulation of magnetic NPs into the engineered virus-like particles (VLPs) through the affinity of histidine tags for the methotrexate (MTX)-Ni2+ chelate. HBc144-His VLPs shell could protect Fe3O4-MTX NPs from the recognition by the reticuloendothelial system as well as could increase their cellular uptake efficiency. Through our well-designed tactic, the photothermal efficiency of Fe3O4 NPs were obviously improved in vitro and in vivo upon near-infrared (NIR) laser irradiation. Moreover, Magnetic resonance imaging (MRI) results showed that the Fe3O4-MTX@HBc core-shell NPs were reliable T2-type MRI contrast agents for tumor imaging. Hence the Fe3O4-MTX@HBc core-shell NPs may act as a promising theranostic platform for multimodal cancer treatment.
How to further increase the upconversion luminescence (UCL) efficiency of core-shell upconversion nanoparticles (UCNPs) is highly desirable for their photoelectric and bio-logical applications. Herein, a novel but facile strategy is proposed to substantially enhance the UCL intensity of NaYF 4 based core-shell UCNPs by morphological control. The morphologies of core-shell UCNPs can be optimized from rod-like to spherical like by changing the ratio of oleic acid (OA) to 1-octadecene (ODE) during the shell growth process with other reaction conditions constant. The mechanism of shape control is further investigated based on the competitive absorption between OA molecules and lanthanide ions (Y 3+ , Yb 3+ , Er 3+ or Tm 3+ ) onto the different crystal axes (a, b and c) to guide their shell growth speed. The absolute quantum yields were up to 2.7% and 1.8% for spherical and rod like core-shell UCNPs under excitation of 980 nm laser (power density of 1.6 W cm −2 ), respectively. Moreover, the UCL intensity and effective lifetime (τ eff ) of Er 3+ emission at 541 nm of spherical like core-shell UCNPs increased by 11.7 and 1.82 folds than rod like core-shell UCNPs. Therefore, our designed novel strategy can greatly improve the UCL efficiency of core-shell UCNPs and promote their development in diverse applications.
A novel strategy for preparing highly pure NaYF-based upconversion nanoparticles (UCNPs) was developed using lanthanide oleate compounds [Ln(OA)] as the precursor, denoted as the Ln-OA preparation method. Compared to the conventional solvothermal method for synthesizing UCNPs using lanthanide chloride compounds (LnCl) as the precursor (denoted as the Ln-Cl method), the Ln-OA strategy exhibited the merits of high purity, reduced purification process and a uniform size in preparing core and core-shell UCNPs excited by a 980 or 808 nm near infrared (NIR) laser. This work sheds new insight on the preparation of UCNPs and promotes their application in biomedical fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.