Accurate prediction of food crop yield is of great significance for global food security and regional trade stability. Since remote sensing data collected from unmanned aerial vehicle (UAV) platforms have the features of flexibility and high resolution, these data can be used as samples to develop regional regression models for accurate prediction of crop yield at a field scale. The primary objective of this study was to construct regional prediction models for winter wheat yield based on multi-spectral UAV data and machine learning methods. Six machine learning methods including Gaussian process regression (GPR), support vector machine regression (SVR) and random forest regression (RFR) were used for the construction of the yield prediction models. Ten vegetation indices (VIs) extracted from canopy spectral images of winter wheat acquired from a multi-spectral UAV at five key growth stages in Xuzhou City, Jiangsu Province, China in 2021 were selected as the variables of the models. In addition, in situ measurements of wheat yield were obtained in a destructive sampling manner for prediction algorithm modeling and validation. Prediction results of single growth stages showed that the optimal model was GPR constructed from extremely strong correlated VIs (ESCVIs) at the filling stage (R2 = 0.87, RMSE = 49.22 g/m2, MAE = 42.74 g/m2). The results of multiple stages showed GPR achieved the highest accuracy (R2 = 0.88, RMSE = 49.18 g/m2, MAE = 42.57 g/m2) when the ESCVIs of the flowering and filling stages were used. Larger sampling plots were adopted to verify the accuracy of yield prediction; the results indicated that the GPR model has strong adaptability at different scales. These findings suggest that using machine learning methods and multi-spectral UAV data can accurately predict crop yield at the field scale and deliver a valuable application reference for farm-scale field crop management.
The leaf area index (LAI) is critical for the respiration, transpiration, and photosynthesis of crops. Color indices (CIs) and vegetation indices (VIs) extracted from unmanned aerial vehicle (UAV) imagery have been widely applied to the monitoring of the crop LAI. However, when the coverage of the crop canopy is large and only spectral data are used to monitor the LAI of the crop, the LAI tends to be underestimated. The canopy height model (CHM) data obtained from UAV-based point clouds can represent the height and canopy structure of the plant. However, few studies have been conducted on the use of the CHM data in the LAI modelling. Thus, in this study, the feasibility of combining the CHM data and CIs and VIs, respectively, to establish LAI fitting models for winter wheat in four growth stages was investigated, and the impact of image resolution on the extraction of remote sensing variables (the CHM data, CIs, and VIs) and on the accuracy of the LAI models was evaluated. Experiments for acquiring remote sensing images of wheat canopies during the four growth stages from the RGB and multispectral sensors carried by a UAV were carried out. The partial least squares regression (PLSR), random forest regression (RFR), and support vector machine regression (SVR) were used to develop the LAI fitting models. Results showed that the accuracy of the wheat LAI models can be improved in the entire growth stages by the use of the additional CHM data with the increment of 0.020–0.268 in R2 for three regression methods. In addition, the improvement from the Cis-based models was more noticeable than the Vis-based ones. Furthermore, the higher the spatial resolution of the CHM data, the better the improvement made by the use of the additional CHM data. This result provides valuable insights and references for UAV-based LAI monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.