Visual navigation is of vital importance for autonomous mobile robots. Most existing practical perception-aware based visual navigation methods generally require prior-constructed precise metric maps, and learning-based methods rely on large training to improve their generality. To improve the reliability of visual navigation, in this paper, we propose a novel object-level topological visual navigation method. Firstly, a lightweight object-level topological semantic map is constructed to release the dependence on the precise metric map, where the semantic associations between objects are stored via graph memory and topological organization is performed. Then, we propose an object-based heuristic graph search method to select the global topological path with the optimal and shortest characteristics. Furthermore, to reduce the global cumulative error, a global path segmentation strategy is proposed to divide the global topological path on the basis of active visual perception and object guidance. Finally, to achieve adaptive smooth trajectory generation, a Bernstein polynomial-based smooth trajectory refinement method is proposed by transforming trajectory generation into a nonlinear planning problem, achieving smooth multi-segment continuous navigation. Experimental results demonstrate the feasibility and efficiency of our method on both simulation and real-world scenarios. The proposed method also obtains better navigation success rate (SR) and success weighted by inverse path length (SPL) than the state-of-the-art methods.
UAV-based object detection has recently attracted a lot of attention due to its diverse applications. Most of the existing convolution neural network based object detection models can perform well in common object detection cases. However, due to the fact that objects in UAV images are spatially distributed in a very dense manner, these methods have limited performance for UAV-based object detection. In this paper, we propose a novel transformer-based object detection model to improve the accuracy of object detection in UAV images. To detect dense objects competently, an advanced foreground enhancement attention Swin Transformer (FEA-Swin) framework is designed by integrating context information into the original backbone of a Swin Transformer. Moreover, to avoid the loss of information of small objects, an improved weighted bidirectional feature pyramid network (BiFPN) is presented by designing the skip connection operation. The proposed method aggregates feature maps from four stages and keeps abundant information of small objects. Specifically, to balance the detection accuracy and efficiency, we introduce an efficient neck of the BiFPN network by removing a redundant network layer. Experimental results on both public datasets and a self-made dataset demonstrate the performance of our method compared to the state-of-the-art methods in terms of detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.