Visual simultaneous localization and mapping (SLAM), based on point features, achieves high localization accuracy and map construction. They primarily perform simultaneous localization and mapping based on static features. Despite their efficiency and high precision, they are prone to instability and even failure in complex environments. In a dynamic environment, it is easy to keep track of failures and even failures in work. The dynamic object elimination method, based on semantic segmentation, often recognizes dynamic objects and static objects without distinction. If there are many semantic segmentation objects or the distribution of segmentation objects is uneven in the camera view, this may result in feature offset and deficiency for map matching and motion tracking, which will lead to problems, such as reduced system accuracy, tracking failure, and track loss. To address these issues, we propose a novel point-line SLAM system based on dynamic environments. The method we propose obtains the prior dynamic region features by detecting and segmenting the dynamic region. It realizes the separation of dynamic and static objects by proposing a geometric constraint method for matching line segments, combined with the epipolar constraint method of feature points. Additionally, a dynamic feature tracking method based on Bayesian theory is proposed to eliminate the dynamic noise of points and lines and improve the robustness and accuracy of the SLAM system. We have performed extensive experiments on the KITTI and HPatches datasets to verify these claims. The experimental results show that our proposed method has excellent performance in dynamic and complex scenes.
Simultaneous localization and mapping (SLAM) systems play an important role in the field of automated robotics and artificial intelligence. Feature detection and matching are crucial aspects affecting the overall accuracy of the SLAM system. However, the accuracy of the position and matching cannot be guaranteed when confronted with a cross-view angle, illumination, texture, etc. Moreover, deep learning methods are very sensitive to perspective change and do not have the invariance of geometric transformation. Therefore, a novel pseudo-Siamese convolutional network of a transformation invariance feature detection and a description for the SLAM system is proposed in this paper. The proposed method, by learning transformation invariance features and descriptors, simultaneously improves the front-end landmark detection and tracking module of the SLAM system. We converted the input image to the transform field; the backbone network was designed to extract feature maps. Then, the feature detection subnetwork and feature description subnetwork were decomposed and designed; finally, we constructed a convolutional network of transformation invariance feature detections and a description for the visual SLAM system. We implemented many experiments in datasets, and the results of the experiments demonstrated that our method has a state-of-the-art performance in global tracking when compared to that of the traditional visual SLAM systems.
Template matching is the fundamental task in remote sensing image processing of air- and space-based platforms. Due to the heterogeneous image sources, different scales and different viewpoints, the realization of a general end-to-end matching model is still a challenging task. Considering the abovementioned problems, we propose a cross-view remote sensing image matching method. Firstly, a spatial attention map was proposed to solve the problem of the domain gap. It is produced by two-dimensional Gaussian distribution and eliminates the distance between the distributed heterogeneous features. Secondly, in order to perform matching at different flight altitudes, a multi-scale matching method was proposed to perform matching on three down-sampling scales in turn and confirm the optimal result. Thirdly, to improve the adaptability of the viewpoint changes, a pixel-wise consensus method based on a correlation layer was applied. Finally, we trained the proposed model based on weakly supervised learning, which does not require extensive annotation but only labels one pair of feature points of the template image and search image. The robustness and effectiveness of the proposed methods were demonstrated by evaluation on various datasets. Our method accommodates three types of template matching with different viewpoints, including SAR to RGB, infrared to RGB, and RGB to RGB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.