Exosomes play critical roles in mediating cell-to-cell communication by delivering noncoding RNAs (including miRNAs, lncRNAs, and circRNAs). Our previous study found that cardiomyocytes (CMs) subjected to hypoxia released circHIPK3-rich exosomes to regulate oxidative stress damage in cardiac endothelial cells. However, the role of exosomes in regulating angiogenesis after myocardial infarction (MI) remains unknown. The aim of this study was to establish the effects of exosomes derived from hypoxia-induced CMs on the migration and angiogenic tube formation of cardiac endothelial cells. Here, we reported that hypoxic exosomes (HPC-exos) can effectively reduce the infarct area and promote angiogenesis in the border surrounding the infarcted area. HPC-exos can also promote cardiac endothelial cell migration, proliferation, and tube formation in vitro. However, these effects were weakened after silencing circHIPK3 in hypoxia-induced CMs. We further verified that silencing and overexpressing circHIPK3 changed cardiac endothelial cell proliferation, migration, and tube formation in vitro by regulating the miR-29a expression. In addition, exosomal circHIPK3 derived from hypoxia-induced CMs first led to increased VEGFA expression by inhibiting miR-29a activity and then promoted accelerated cell cycle progression and proliferation in cardiac endothelial cells. Overexpression of miR-29a mimicked the effect of silencing circHIPK3 on cardiac endothelial cell activity in vitro. Thus, our study provides a novel mechanism by which exosomal circRNAs are involved in the communication between CMs and cardiac endothelial cells.
Post-transcriptional modifications play pivotal roles in various pathological processes and ischemic disorders. However, the role of N7-methylguanosine (m7G), particularly m7G in mRNA, on post-ischemic angiogenesis remains largely unknown. Here, we identified that methyltransferase like 1 (METTL1) was a critical candidate responsible for a global decrease of m7G within mRNA from the ischemic tissues. The in vivo gene transfer of METTL1 improved blood flow recovery and increased angiogenesis with enhanced mRNA m7G upon post-ischemic injury. Increased METTL1 expression using plasmid transfection in vitro promoted HUVECs proliferation, migration, and tube formation with a global increase of m7G in mRNA. Mechanistically, METTL1 promoted VEGFA mRNA translation in an m7G methylation-dependent manner. Our findings emphasize a critical link between mRNA m7G and ischemia and provide a novel insight of targeting METTL1 in the therapeutic angiogenesis for ischemic disorders, including peripheral arterial disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.