Canarium album fruit has great potential to be consumed as a raw material not only for food but also medicine. The diverse active metabolites composition and content of C. album fruits greatly affect their pharmacological effects. However, up to now, there has been no report on the global metabolome differences among fruits from distinct C. album cultivars. In our present study, by using non-targeted metabolomics techniques, we identified 87 DAMs (differentially accumulated metabolites) including 17 types of flavonoids from fruits of four different C. album cultivars. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that the flavone and flavonol biosynthesis- and flavonoid biosynthesis-related DAMs were major factors determining their metabolome differences. Comparative transcriptomic analysis revealed that 15 KEGG pathways were significantly enriched by genes of the identified 3655 DEGs (differentially expressed genes) among different C. album cultivars. Consistent with the metabolome data, flavonoid biosynthesis-related DEGs, including eight key structural genes (such as FLS, CCoAOMT, CHI, C4H, DFR, LAR, and C3′H, etc.) and several regulatory transcription factor (TF) genes (including 32 MYBs and 34 bHLHs, etc.), were found to be significantly enriched (p < 0.01). Our study indicated that the differential expression of flavonoid biosynthesis-related genes and accumulation of flavonoids played dominant roles in the various metabolome compositions of fruits from different C. album cultivars.
Chinese olive (Canarium album), a characteristic fruit tree in tropical and subtropical areas, suffers greatly from low-temperature stress (LTS). The regulatory roles of microRNA (miRNA) in plant LTS responses have been confirmed in many plant species but not in C. album. In this study, a cold-tolerant cultivar ‘Rui’an 3′ (RA) and a susceptible cultivar ‘Qinglan 1’ (QL) treated at 25 °C (control, CK) and −3 °C (cold temperature treatment, CT) were subjected to small RNA (sRNA) and transcriptome sequencing for the exploration of the cold responses of C. album. Comparative sRNA sequencing analysis identified much fewer LTS-responsive, differentially expressed miRNAs (DEMs) in RA (4 DEMs) than in QL (23 DEMs). Cal-miR482-22 was found to be specifically induced by LTS in RA. Cal-miR397-3 was upregulated, while cal-miR398_2-3 and cal-undef-190 were downregulated after LTS only in QL. However, when compared with QL, a higher basic expression of cal-miR397-3, and lower expression of cal-miR398_2-3 and cal-undef-190 were found in RA, suggesting that they may contribute to the cold tolerance of RA. Comparative transcriptome analysis showed that the number of LTS-responsive differentially expressed genes (DEGs) identified in QL was larger than that in RA, and some DEGs were also predicted as the target genes of the identified DEMs, forming multiple differentially expressed miRNA–target gene pairs, such as cal-miR397-3_laccase 2, 4, 17, cal-miR482-22_suppressor of npr1-1, etc. Quantitative real time PCR results showed that the expression changes of DEGs and DEMs in different samples were generally consistent with the sequencing results. Our study indicated that the basic expression levels of some miRNAs (especially the cal-miR397-3, cal-miR398_2-3, and cal-miR482-22), and their target genes contribute greatly to the cold-tolerance characteristics of C. album. Our study is helpful for understanding the roles of miRNAs in the cold resistance and responses of C. album.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.