Lung cancer related hypercoagulability could increase the risk of ischemic stroke. Routine coagulation tests may have limited capacity in evaluating hypercoagulability. The aim of this study was to investigate the ability of thromboelastography (TEG) in the identification of hypercoagulability in patients with lung cancer and cryptogenic ischemic stroke (LCIS). Between January 2016 and December 2018, whole citrated blood from LCIS patients (n = 35) and age- and gender-matched lung cancer patients and healthy volunteers were used for TEG and routine coagulation tests. The coagulation indicator and clinical data were compared among the 3 groups. There were 27/35 (77.14%) on TEG and 18/35 (51.43%) on routine coagulation tests of LCIS patients who had evidence of hypercoagulability. The detection rate of hypercoagulability by TEG in LCIS patients was higher than routine coagulation tests ( P = 0.018). Comparing with lung cancer patients and healthy controls, LCIS patients have a significantly higher maximum amplitude (MA), fibrinogen, and D-dimer. Multivariate analysis showed that D-dimer and MA were significantly associated with ischemic stroke in lung cancer patients. ROC curve showed that the area under the curve of TEG (0.790 ± 0.048, 95% CI: 0.697-0.864) was significantly higher than routine coagulation tests (0.673 ± 0.059, 95% CI: 0.572-0.763) ( P = 0.04) in identifying hypercoagulability in LCIS patients. Therefore, TEG could identify hypercoagulability in LCIS patients and healthy controls. Identification of hypercoagulability in lung cancer patients by TEG may be helpful to prevent the occurrence of LCIS.
Objective. The purpose of this study was to investigate the characteristics of different frequency bands in the spontaneous brain activity among patients with acute basal ganglia ischemic stroke (BGIS). Methods. In the present study, thirty-four patients with acute BGIS and forty-four healthy controls were examined by resting-state functional magnetic resonance imaging (rs-fMRI) from May 2019 to December 2020. Two amplitude methods including amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) calculated in three frequency bands (conventional frequency band: 0.01-0.08 Hz; slow-5 frequency band: 0.01-0.027 Hz; and slow-4 frequency band: 0.027-0.073 Hz) were conducted to evaluate the spontaneous brain activity in patients with acute BGIS and healthy controls (HCs). Gaussian Random Field Theory (GRF, voxel p < 0.01 and cluster p < 0.05 ) correction was applied. The correlation analyses were performed between clinical scores and altered metrics values. Results. Compared to HCs, patients with acute BGIS showed decreased ALFF in the right supramarginal gyrus (SMG) in the conventional and slow-4 bands, increased fALFF in the right middle frontal gyrus (MFG) in the conventional and slow-4 bands, and increased fALFF in the bilateral caudate in the slow-5 frequency band. The fALFF value of the right caudate in the slow-5 frequency band was negatively correlated with the clinical scores. Conclusion. In conclusion, this study showed the alterations in ALFF and fALFF in three frequency bands between patients with acute BGIS and HCs. The results reflected that the abnormal LFO amplitude might be related with different frequency bands and promoted our understanding of pathophysiological mechanism in acute BGIS.
Abstract. microRNA (miR) are a class of endogenous small non-coding RNA that are aberrantly expressed and are critical in tumorigenesis. Amongst them, miR-152 was reported to be dysregulated in epithelial ovarian cancer (EOC). However, the function and mechanism of miR-152 is not well understood. In the present study, total RNA was extracted from 58 ovarian epithelial carcinoma tissue samples and adjacent non-tumor tissues and measured by reverse transcription-quantitative polymerase chain reaction. The observations of the present study revealed that the expression of miR-152 was significantly downregulated in EOC specimens, as well as three ovarian cancer (OC) cell lines. The higher expression of miR-152 indicated a better overall survival rate in patients with EOC. Following miR-152 mimic transfection into SKOV3 or OVCAR3 cells, MTT assay revealed that cell proliferation was significantly inhibited (P<0.05). Although miR-152 had no effect on SKOV3 cell migration, miR-152 inhibited OVCAR3 cell migration. Bioinformatics analyses and luciferase reporter assays demonstrated that miR-152 targeted the 3'-untranslated region (3'-UTR) of the forkhead box protein 1 (FOXP1). Furthermore, introducing FOXP1 without the 3'-UTR abrogated the effect of miR-152-induced proliferation and migration alteration, respectively. In addition, the expression level of FOXP1 was higher in the EOC tumor tissues and cell lines. Additionally, the level of miR-152 and FOXP1 was inversely correlated in grade 3 and 4 ovarian tumor tissues. Altogether, these observations indicated that miR-152 may be involved in the inhibition of OC through repression of FOXP1. In the future, miR-152 and FOXP1 may act as novel biomarkers for early detection of EOC or therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.