All-polymer solar cells (all-PSCs) composed of conjugated polymers as both donor and acceptor components in bulk heterojunction photoactive layers have attracted increasing attention. However, it is a big challenge to achieve optimal morphology in polymer:polymer blends. In response, we report herein a new strategy to adjust the nanoscale organization for all-PSCs. Specifically, side chain engineering of the well-known naphthalene diimide (NDI)-based polymer N2200 is modulated by introducing a fraction of linear oligoethylene oxide (OE) side chains to replace branched alkyl chains on the NDI units and by synthesizing a series of NDI-based polymer acceptors NOE x, where x is the percentage of OE chain substituted NDI units relative to total NDI units. Compared to the reference polymer NOE0, OE-chain-containing polymer NOE10 offers a much higher power conversion efficiency (PCE) of 8.1% with a record high fill factor (FF) of 0.75 in all-PSCs. Moreover, the NOE10-based all-PSC exhibits excellent long-term and thermal stabilities with >97% of the initial PCE being maintained after 300 h of aging at 65 °C. This work demonstrates an effective morphology optimization strategy to achieve highly efficient and stable all-PSCs and shows the excellent potential of NOE10 as an alternative to commercially available acceptor polymers N2200.
BackgroundDehydrins (DHNs) protect plant cells from desiccation damage during environmental stress, and also participate in host resistance to various pathogens. In this study, we aimed to identify and characterize the DHN gene families from Vitis vinifera and wild V. yeshanensis, which is tolerant to both drought and cold, and moderately resistant to powdery mildew.ResultsFour DHN genes were identified in both V. vinifera and V. yeshanensis, which shared a high sequence identity between the two species but little homology between the genes themselves. These genes were designated DHN1, DHN2, DHN3 and DHN4. All four of the DHN proteins were highly hydrophilic and were predicted to be intrinsically disordered, but they differed in their isoelectric points, kinase selectivities and number of functional motifs. Also, the expression profiles of each gene differed appreciably from one another. Grapevine DHN1 was not expressed in vegetative tissues under normal growth conditions, but was induced by drought, cold, heat, embryogenesis, as well as the application of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). It was expressed earlier in V. yeshanensis under drought conditions than in V. vinifera, and also exhibited a second round of up-regulation in V. yeshanensis following inoculation with Erysiphe necator, which was not apparent in V. vinifera. Like DHN1, DHN2 was induced by cold, heat, embryogenesis and ABA; however, it exhibited no responsiveness to drought, E. necator infection, SA or MeJA, and was also expressed constitutively in vegetative tissues under normal growth conditions. Conversely, DHN3 was only expressed during seed development at extremely low levels, and DHN4 was expressed specifically during late embryogenesis. Neither DHN3 nor DHN4 exhibited responsiveness to any of the treatments carried out in this study. Interestingly, the presence of particular cis-elements within the promoter regions of each gene was positively correlated with their expression profiles.ConclusionsThe grapevine DHN family comprises four divergent members. While it is likely that their functions overlap to some extent, it seems that DHN1 provides the main stress-responsive function. In addition, our results suggest a close relationship between expression patterns, physicochemical properties, and cis-regulatory elements in the promoter regions of the DHN genes.
Phase stabilizers identified from a top-down strategy overcome microstructure instability of organic solar cells induced by thermal or photo stress.
The application of conjugated polymer and fullerene water‐based nanoparticles (NP) as ecofriendly inks for organic photovoltaics (OPVs) is reported. A low bandgap polymer diketopyrrolopyrrole–quinquethiophene (PDPP5T‐2) and the methanofullerene PC71BM are processed into three types of nanoparticles: pristine fullerene NPs, pristine polymer NPs, and mixed polymer:fullerene NPs, allowing the formation of bulk heterojunction (BHJ) composites with different domain sizes. Mild thermal annealing is required to melt the nanospheres and enable the formation of interconnected pathways within mixed phases. This BHJ is accompanied by a shrinkage of film, whereas the more compact layers show enhanced mobility. Consistently reduced recombination and better performance are found for mixed NP, containing both, the polymer and the fullerene within a single NP. The optimized solar cell processed by ultrasmall NPs delivers a power conversion efficiency of about 3.4%. This is among the highest values reported for aqueous processed OPVs but still lacks performance compared to those being processed from halogenated solvents. Incomplete crystallization is identified as the main root for reduced efficiency. It is nevertheless believed that postprocessing does not cut attraction from printing aqueous organic NP inks as a trendsetting strategy for the reliable and ecofriendly production of organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.