The recent breakthroughs in deep neural networks (DNNs) have spurred a tremendously increased demand for DNN accelerators. However, designing DNN accelerators is non-trivial as it often takes months/years and requires cross-disciplinary knowledge. To enable fast and effective DNN accelerator development, we propose DNN-Chip Predictor, an analytical performance predictor which can accurately predict DNN accelerators' energy, throughput, and latency prior to their actual implementation. Our Predictor features two highlights: (1) its analytical performance formulation of DNN ASIC/FPGA accelerators facilitates fast design space exploration and optimization; and (2) it supports DNN accelerators with different algorithm-to-hardware mapping methods (i.e., dataflows) and hardware architectures. Experiment results based on 2 DNN models and 3 different ASIC/FPGA implementations show that our DNN-Chip Predictor's predicted performance differs from those of chip measurements of FPGA/ASIC implementation by no more than 17.66% when using different DNN models, hardware architectures, and dataflows. We will release code upon acceptance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.