Halide perovskites are an emerging scintillator material for X-ray imaging. High-quality X-ray imaging generally requires high spatial resolution and long operation lifetime, especially for targeted objects with irregular shapes. Herein, a perovskite "polymer-ceramics" scintillator, in which the halide perovskite nanocrystals are grown inside a pre-solidified polymer structure with high viscosity (6 × 10 12 cP), is designed to construct flexible and refreshable X-ray imaging. A nucleation inhibition strategy is proposed to prevent the agglomeration and Ostwald ripening of perovskite crystals during the subsequent precipitation process, enabling a high-quality polymer-ceramics scintillator with high transparency. This scintillator-based detector achieves a detection limit of 120 nGy s -1 and a spatial resolution of 12.5 lp mm -1 . Interestingly, due to the anchoring effect of the exfoliated atoms provided by the polymer matrix, the scintillator film can be refreshed after a long duration (≥3 h) and high dose (8 mGy s -1 ) irradiation. More importantly, this inherent characteristic overcomes the long operation lifetime issue of perovskites-based scintillators. Hence, the authors' exploration of the polymer-ceramics scintillator paves the way for the development of flexible and durable perovskite scintillators that can be produced at a low operation cost.
Owing to their high conductivity and carrier mobility, the outstanding achievements of lead halide perovskites have been demonstrated in humidity sensor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.