c-Jun N-terminal protein kinase (JNK), a member of the mitogen-activated protein (MAP) kinase family, regulates gene expression in response to various extracellular stimuli. JNK is activated by JNK-activating kinase (JNKK1 and JNKK2), a subfamily of the dual specificity MAP kinase kinase (MEK) family, through phosphorylation on threonine (Thr) 183 and tyrosine (Tyr) 185 residues. The physiological functions of the JNK pathway, however, are not completely understood. A major obstacle is the lack of specific and activated kinase components that can stimulate the JNK pathway in the absence of any stimulus. Here we show that fusion of JNK1 to its upstream activator JNKK2 resulted in its constitutive activation. In HeLa cells, the JNKK2-JNK1 fusion protein showed significant JNK activity, which was comparable with that of JNK1 activated by many stimuli and activators, including EGF, TNF-␣, anisomycin, UV irradiation, MEKK1, and small GTP binding proteins Rac1 and Cdc42Hs. Immunoblotting analysis indicated that JNK1 was phosphorylated by JNKK2 in the fusion protein on both Thr 183 and Tyr 185 residues. Like JNKK2, the JNKK2-JNK1 fusion protein was highly specific for the JNK pathway and did not activate either p38 or ERK2. Transient transfection assays demonstrated that the JNKK2-JNK1 fusion protein was sufficient to stimulate c-Jun transcriptional activity in the absence of any stimulus. Immunofluorescence analysis revealed that the JNKK2-JNK1 fusion protein was predominantly located in the nucleus of transfected HeLa cells. These results indicate that the JNKK2-JNK1 fusion protein is a constitutively active Jun kinase, which will facilitate the investigation of the physiological roles of the JNK pathway.
Apoptosis and calcification of endplate chondrocytes (EPCs) can exacerbate intervertebral disc degeneration (IVDD). Mesenchymal stem cell-derived exosomes (MSC-exosomes) are reported to have the therapeutic potential in IVDD. However, the effects and related mechanisms of MSC-exosomes on EPCs are still unclear. We aimed to investigate the role of MSC-exosomes on EPCs with a tert-butyl hydroperoxide (TBHP)-induced oxidative stress cell model and IVDD rat model. First, our study revealed that TBHP could result in apoptosis and calcification of EPCs, and MSC-exosomes could inhibit the detrimental effects. We also found that these protective effects were inhibited after miroRNA (miR)-31-5p levels were downregulated in MSC-exosomes. The target relationship between miR-31-5p and ATF6 was tested. miR-31-5p negatively regulated ATF6-related endoplasmic reticulum (ER) stress and inhibited apoptosis and calcification in EPCs. Our in vivo experiments indicated that sub-endplate injection of MSC-exosomes can ameliorate IVDD; however, after miR-31-5p levels were downregulated in MSC-exosomes, these protective effects were inhibited. In conclusion, MSC-exosomes reduced apoptosis and calcification in EPCs, and the underlying mechanism may be related to miR-31-5p/ATF6/ER stress pathway regulation.
Hirayama disease (HD) is characterized by the juvenile onset of unilateral or asymmetric weakness and amyotrophy of the hand and ulnar forearm and is most common in males in Asia. A perception of compliance with previous standards of diagnosis and treatment appears to be challenged, so the review is to update on HD. First, based on existing theory, the factors related to HD includes, (1) cervical cord compression during cervical flexion, (2) immunological factors, and (3) other musculoskeletal dynamic factors. Then, we review the clinical manifestations: typically, (1) distal weakness and wasting in one or both upper extremities, (2) insidious onset and initial progression for 3–5 years, (3) coarse tremors in the fingers, (4) cold paralysis, and (5) absence of objective sensory loss; and atypically, (1) positive pyramidal signs, (2) atrophy of the muscles of the proximal upper extremity, (3) long progression, and (4) sensory deficits. Next, updated manifestations of imaging are reviewed, (1) asymmetric spinal cord flattening, and localized lower cervical spinal cord atrophy, (2) loss of attachment between the posterior dural sac and the subjacent lamina, (3) forward displacement of the posterior wall of the cervical dural sac, (4) intramedullary high signal intensity in the anterior horn cells on T2-weighted imaging, and (5) straight alignment or kyphosis of cervical spine. Thus, the main manifestations of eletrophysiological examinations in HD include segmental neurogenic damages of anterior horn cells or anterior roots of the spinal nerve located in the lower cervical spinal cord, without disorder of the sensory nerves. In addition, definite HD needs three-dimensional diagnostic framework above, while probable HD needs to exclude other diseases via “clinical manifestations” and “electrophysiological examinations”. Finally, the main purpose of treatment is to avoid neck flexion. Cervical collar is the first-line treatment for HD, while several surgical methods are available and have achieved satisfactory results. This review aimed to improve the awareness of HD in clinicians to enable early diagnosis and treatment, which will enable patients to achieve a better prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.