The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.
For the purpose of successfully developing a prosthetic control system, many attempts have been made to improve the classification accuracy of surface electromyographic (SEMG) signals. Nevertheless, the effective feature extraction is still a paramount challenge for the classification of SEMG signals. The relative frequency band energy (RFBE) method based on wavelet packet decomposition was proposed for the prosthetic pattern recognition of multichannel SEMG signals. Firstly, the wavelet packet energy of SEMG signals in each subspace was calculated by using wavelet packet decomposition and the RFBE of each frequency band was obtained by the wavelet packet energy. Then, the principal component analysis (PCA) and the Davies-Bouldin (DB) index were used to perform the feature selection. Lastly, the support vector machine (SVM) was applied for the classification of SEMG signals. Our results demonstrated that the RFBE approach was suitable for identifying different types of forearm movements. By comparing with other classification methods, the proposed method achieved higher classification accuracy in terms of the classification of SEMG signals.
Differences of EEG synchronization between normal old and young people during a working memory (WM) task were investigated. The synchronization likelihood (SL) is a novel method to assessed synchronization in multivariate time series for non-stationary systems. To evaluate this method to study the mechanisms of WM, we calculated the SL values in brain electrical activity for both resting state and task state. EEG signals were recorded from 14 young adults and 12 old adults during two different states, respectively. SL was used to measure EEG synchronization between 19 electrodes in delta, theta, alpha1, alpha2 and beta frequency bands. Bad task performance and significantly decreased EEG synchronization were found in old group compared to young group in alpha1, alpha2 and beta frequency bands during the WM task. Moreover, significantly decreased EEG synchronization in beta band in the elder was also detected during the resting state. The findings suggested that reduced EEG synchronization may be one of causes for WM capacity decline along with healthy aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.