It has been demonstrated that a single shunted loudspeaker can be used as an effective low frequency sound absorber in a duct, but many shunted loudspeakers have to be used in practice for noise reduction or reverberation control in rooms, thus it is necessary to understand the performance of an array of shunted loudspeakers. In this paper, a model for the parallel shunted loudspeaker array for multi-tone sound absorption is proposed based on a modal solution, and then the acoustic properties of a shunted loudspeaker array under normal incidence are investigated using both the modal solution and the finite element method. It was found that each shunted loudspeaker can work almost independently where each unit resonates. Based on the interaction analysis, multi-tone absorbers in low frequency can be achieved by designing multiple shunted loudspeakers with different shunt circuits respectively. The simulation and experimental results show that the normal incidence sound absorption coefficient of the designed absorber has four absorption peaks with values of 0.42, 0.58, 0.80, and 0.84 around 100 Hz, 200 Hz, 300 Hz, and 400 Hz respectively.
Transformer noise is dominated by low frequency components, which are hard to be controlled with traditional noise control approaches. the shunt loudspeaker consisting of a closed-box loudspeaker and a shunt circuit has been proposed as an effective sound absorber by storing and dissipating the electrical energy converted from the incident sound. In this paper, an array of shunt loudspeakers is proposed to control the 100 Hz and 200 Hz components of transformer noise. The prototype under tests has a thickness of 11.8 cm, which is only 1/28 of the wavelength of 100 Hz. The sound absorption performance of the array under random incidence is analyzed with the parallel impedance method, and the arrangement of array elements is optimized. The test results in a reverberation room show that the proposed array has sound absorption coefficients of 1.04 and 0.93 at 100 Hz and 200 Hz, respectively, which provides potential of applying this type of thin absorbers for low-frequency sound control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.