Abstract:Aiming for large-scale renewable energy sources (RES) integrated to power systems with power electronic devices, the technology of virtual synchronous generator (VSG) has been developed and studied in recent years. It is necessary to analyze the damping characteristics of the power system with RES generation based on VSG and develop its corresponding damping controller to suppress the possible low frequency oscillation. Firstly, the mathematical model of VSG in a per unit (p.u) system is presented. Based on the single-machine infinite bus system integrated with an RES power plant, the influence of VSG on the damping characteristics of the power system is studied qualitatively by damping torque analysis. Furthermore, the small-signal model of the considered system is established and the damping ratio of the system is studied quantitatively by eigenvalue analysis, which concluded that adjusting the key control parameters has limited impacts on the damping ratio of the system. Consequently, referring to the configuration of traditional power system stabilizer (PSS), an auxiliary damping controller (ADC) for VSG is designed to suppress the low frequency oscillation of the power system. Finally, simulations were performed to verify the validity of theoretical analysis and the effectiveness of designed ADC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.