To this day, biological sonar systems still have great performance advantages over artificial sonar systems, especially for detection in environments with clutter, strong reverberation, and a low signal to noise ratio (SNR). Therefore, mammal sonar systems, for instance, bats and toothed whales, have many characteristics worth learning from. This paper proposes a bioinspired twin inverted multiscale matched filtering method to detect underwater moving targets. This method can be mainly divided into three parts. Firstly, a hyperbolic frequency modulation (HFM) continuous wave (CW) multiharmonic detection signal was adopted after analyzing signals from bats and dolphins. This signal combines the advantages of CW and HFM signals and has excellent time measurement and speed measurement performance when detecting a moving target. Secondly, the twin inverted waveform was introduced to suppress strong linear reverberation and highlight moving targets. The pulse interval was determined by assessing the reverberation reduction time. Thirdly, when processing echoes, a multiscale matched filtering method was proposed to make use of multiharmonic information and improve detection performance. Finally, a channel pool experiment was carried out to test the performance of the proposed method. The experimental result demonstrates that the proposed method has better performance when detecting a moving target in a reverberant environment compared to the conventional matched filtering method. Related results can be applied to small underwater platforms or sensor network platforms for target detection and coastal defense applications.
Sea ice and freshwater ice can be different in terms of physical and acoustic characteristics, such as density, salinity, etc. In this paper, under-ice ambient noise in the Mudan river (Jilin Province, Northeast of China) is analyzed using the data recorded by autonomous hydrophones to test if the river ice environment is an effective analog for studying under-ice noise of multi-year ice sheets in the Arctic. The noise spectrum level below 250 Hz and above 1 kHz decreases linearly with the increase in the logarithmic frequency in a quiet environment. The ice cracks are detected and extracted, and Pearson correlation analysis between meteorological information and cracks is carried out. Frequency correlation matrixes are calculated to obtain the correlation between pairs of frequencies and evaluate the frequency correlation of ice crack noise of two hydrophones under different depths, different distances, and different times. Finally, the paper compares the experimental results with Arctic under-ice noise in the literature. Similarities with Arctic under-ice noise are observed in the experiment, including noise spectrum, cracks' peak frequency, and correlations between temperature and crack intensity. This paper believes that the study of under-ice noise in freshwater rivers can be used to simulate multi-year ice regions in the Arctic in terms of thermal-induced cracks and meteorological correlation. And future research is needed to prove this judgment further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.