BackgroundPrimary immune thrombocytopenia (ITP) is an autoimmune bleeding disorder with an unclear etiology. This study aims to investigate the role of IL-23/Th17 pathway in patients with ITP.MethodThe gene expressions of IL-17, IL-23 and their receptors in ITP patients and healthy controls were analyzed by quantitative real-time PCR. ELISA was used to test the IL-17 and IL-23 levels in plasma. Flow cytometry was used to detect the frequency of Th17 cells. The correlation between plasma IL-23 and IL-17 levels, Th17 cells, platelets were analyzed. The level of Th17-related cytokines was measured by ELISA following stimulation with IL-23. Subsequently, the IL-23 and IL-17 levels were measured in patients post-treatment.ResultsThe PBMCs of ITP patients showed increased mRNA expression levels in each of the following: IL-23p19, IL-12p40, IL-23R, IL-12Rβ1, IL-17A, IL-17F, and RORC. In addition, elevated Th17 cells and plasma IL-17, IL-23 levels were also observed in these ITP patients. Furthermore, it was found that IL-23 levels in plasma are positively correlated with IL-17 levels and Th17 cells, yet negatively correlated with platelet count. Following IL-23 stimulation in vitro, IL-17 levels showed significant elevation. Furthermore, both IL-23 and IL-17 levels decreased after effective treatment.ConclusionThe IL-23/Th17 pathway may be involved in the pathogenesis of ITP through enhancement of the Th17 response. Moreover, our results suggest that the IL-23/Th17 pathway is a potential therapeutic target in future attempts of ITP treatment.
The aim of the current study was to understand the mechanisms of apoptosis occurring in cultured human lens epithelial cells (HLECs) following ultraviolet B (UVB) irradiation. The investigations intended to confirm the presence of apoptosis and to reveal the roles of oxidative stress, calcium (Ca2+), c‑Jun NH2‑terminal kinase (JNK)1/2, and extracellular signal‑regulated kinase (ERK)1/2 signaling pathway in these progresses. Cell apoptosis, ROS generation and intracellular Ca2+ concentration was measured by flow cytometry. The expression of CALML3, caspase-3, Bax, Bcl-2, p-JNK1/2, JNK1/2, p-ERK1/2 and ERK1/2 was measured by RT-qPCR and western blot analysis. Annexin V‑fluorescein isothiocyanate/propidium iodide staining demonstrated that UVB irradiation increased the apoptotic rate, reactive oxygen species (ROS) production and intracellular Ca2+ concentration of HLECs in dose‑ and time‑dependent manners. Overexpression of calmodulin like 3 (CALML3) reversed the effects of UVB irradiation on apoptosis, ROS production and Ca2+ concentration of HLECs, and decreased expressions of caspase‑3 and Bax, with increased expressions of Bcl‑2. Notably, silencing of CALML3 had similar effects to UVB irradiation and inhibited the activation JNK1/2 and ERK1/2 pathways. Nimodipine, a Ca2+‑channel antagonist, significantly attenuated the damages induced by CALML3 downregulation. In conclusion, UVB irradiation induced increase in apoptosis, ROS production and Ca2+ concentration of HLECs, in part, by downregulating the expression of CALML3 and involved oxidative stress, Ca2+, JNK1/2 and ERK1/2 signaling pathways, suggesting that investigating CALML3 may useful for developing cataract treatment.
We performed a systematic review of English-language studies published during the past three decades to investigate the diagnostic performance of serum glial fibrillary acidic protein (GFAP) for the differential diagnosis of acute stroke, including intracerebral hemorrhage (ICH) and cerebral ischemia (CI). QUADAS tools were used to evaluate the quality of the study. Performance characteristics (diagnostic sensitivity, specificity, and other measures of accuracy) were pooled and examined using fixed-effects models. Four studies met the inclusion criteria, and included 109 patients with ICH and 381 patients with CI. The summary estimates for GFAP in the ICH diagnoses had a diagnostic sensitivity of 0.80 (95% confidence interval 0.71-0.88), a specificity of 0.97 (95% confidence interval, 0.94-0.98), and a diagnostic odds ratio (DOR) of 119.55 (95% confidence interval: 51.75-276.19). The area under curve (AUC) and Q value for the sROC curves were 0.97 and 0.92, respectively. Therefore, GFAP showed high diagnostic accuracy for acute stroke differential diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.