Serum concentrations of h-FABP and BNP can be used as biomarkers to evaluate the severity of heart failure, and carvedilol can significantly improve heart function in children with CHF.
The objective of the study was to explore the pathogenesis of mesial temporal lobe epilepsy (MTLE) and the mechanism of valproate administration in the early stage of MTLE development. We performed a global comparative analysis and function classification of differentially expressed proteins using proteomics. MTLE models of developmental rats were induced by lithium-pilocarpine. Proteins in the hippocampus were separated by 2-DE technology. PDQuest software was used to analyze 2-DE images, and MALDI-TOF-MS was used to identify the differentially expressed proteins. Western blot was used to determine the differential expression levels of synapse-related proteins synapsin-1, dynamin-1 and neurogranin in both MTLE rat and human hippocampus. A total of 48 differentially expressed proteins were identified between spontaneous and non-spontaneous MTLE rats, while 41 proteins between MTLE rats and post valproate-treatment rats were identified. All of the proteins can be categorized into several groups by biological functions: synaptic and neurotransmitter release, cytoskeletal structure and dynamics, cell junctions, energy metabolism and mitochondrial function, molecular chaperones, signal regulation and others. Western blot results were similar to the changes noted in 2-DE. The differentially expressed proteins, especially the proteins related to synaptic and neurotransmitter release function, such as synapsin-1, dynamin-1 and neurogranin, are probably involved in the mechanism of MTLE and the pharmacological effect of valproate. These findings may provide important clues to elucidate the mechanism of chronic MTLE and to identify an optimum medication intervention time and new biomarkers for the development of pharmacological therapies targeted at epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.