During the drilling process, high-strength rock can lead to various issues such as drilling suppression, bit wear, and increased operational costs. To ensure safe and efficient drilling operations, it is crucial to accurately predict the strength parameters of the rock and recommend modifications to operational procedures. This paper proposes a low-cost and fast measurement method for predicting the strength parameters of rock in the field. To evaluate the effectiveness of this method, a drilling process monitoring experiment was conducted on sandstone, limestone, and granite. The experiment studied the effect of confining pressure on the response of cutting with an impregnated diamond bit. By analyzing the relationship between the thrust force, torque force, and penetration depth under different confining pressures, the researchers developed an analytical model for drilling that considers confining pressure, compressed crushed zone, and bit geometry. The results show that the confining pressure has a significant effect on the cutting response. As the confining pressure increases, the thrust force, torque force, and penetration depth at the cutting point also increase. Furthermore, a new measurement method was proposed to determine the strength parameters, such as cohesion, internal friction angle, and unconfined compressive strength. The estimated strength parameters for the three rock types using the drilling method were in good agreement with those of the standard laboratory test, with an error range of 10%. This method of estimating rock strength parameters is a practical tool for engineers. It can continuously and quickly obtain the drilling parameters of in-situ rocks.
A significant amount of bypassed oil resources often remain in a mature waterflooding reservoir because of non-uniform sweep caused by natural complexities of a subsurface reservoir and improper management of the reservoir. Infill drilling is one of the most attractive options for increasing oil recovery in consequence of its operational simplicity, low risk and promising results. Determining optimal infill well placements in heterogeneous mature reservoirs is a critical and challenging task that has a significant impact on the recovery performance and economic revenue of subsurface remaining oil resources. An integrated framework is constructed to attain best-obtained optimal location and completion of infill wells in multi-layer mature oil reservoirs. The placement of an infill vertical well is parameterized in terms of two sets of variables that define the location and completion respectively. A variant of SPSA algorithm is used to solve the defined optimization problem. The performance of the proposed algorithm is first tested for the joint optimization of well location and completion of an injection well using a synthetic model. The results show that the algorithm with average SPSA gradients outperforms the single SPSA gradient method both in solution and convergence rate. Besides, there are two plateaus on the performance curve of all algorithms: on the first plateau, each algorithm is approaching to its optimal well location with relatively little change on the completion parameters, while on the second plateau, each algorithm obtains the corresponding optimal completions. A complex heterogeneous reservoir model is then constructed by using the data of a mature oil reservoir in Shengli Oilfield in China to design an optimal 10 years’ infill drilling program. Four vertical production wells are placed in the oil-rich regions and both simultaneous and sequential algorithms are tried to obtain their optimal locations and completions. The performances of simultaneous joint optimization and sequential joint optimization are compared and as a result it is recommended to use sequential joint optimization as the optimization algorithm in the integrated framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.