Osteoporotic vertebral compression fracture (OVCF) has become a major public health issue that becomes more pressing with increasing global aging. Percutaneous kyphoplasty (PKP) is an effective treatment for OVCF. Robot-assisted PKP has been utilized in recent years to improve accuracy and reduce complications. However, the effectiveness of robot-assisted PKP in the treatment of multi-segmental OVCF has yet to be proved. This study was designed to compare the efficacy of robot-assisted and conventional fluoroscopy-assisted multi-segmental PKP. A total of 30 cases with multi-segmental OVCF between April 2019 and April 2021 were included in this study. Fifteen cases were assigned to the robot-assisted PKP group (robot group) and 15 cases to the conventional fluoroscopy-assisted PKP group (conventional fluoroscopy group). The number of fluoroscopic exposures, fluoroscopic dose, operation time, cement leakage rate, visual analog scale (VAS) score, vertebral kyphosis angle (VKA), and height of fractured vertebral body (HFV) were compared between the 2 groups. The number of fluoroscopic exposures, fluoroscopic doses, and cement leakage rates in the robot group were lower than in the conventional fluoroscopy group ( P <0.05) while the operative time in the robot group was longer than in the conventional fluoroscopy group ( P <0.05). VAS score and VKA were decreased and HFV was increased after surgery in both groups ( P <0.05). Therefore, robot-assisted PKP for the treatment of multi-segmental OVCF can reduce the number of fluoroscopic exposures, fluoroscopic doses, and cement leakage compared to conventional treatment. As such, robot-assisted PKP has good application prospects and is potentially more effective in the treatment of multi-segmental OVCF.
The current study aims to ascertain the anatomical feasibility of transferring the contralateral S1 ventral root (VR) to the ipsilateral L5 VR for treating unilateral spastic lower limb paralysis. Six formalin-fixed (three males and three females) cadavers were used. The VR of the contralateral S1 was transferred to the VR of the ipsilateral L5. The sural nerve was selected as a bridge between the donor and recipient nerve. The number of axons, the cross-sectional areas and the pertinent distances between the donor and recipient nerves were measured. The extradural S1 VR and L5 VR could be separated based on anatomical markers of the dorsal root ganglion. The gross distance between the S1 nerve root and L5 nerve root was 31.31 (± 3.23) mm in the six cadavers, while that on the diffusion tensor imaging was 47.51 (± 3.23) mm in 60 patients without spinal diseases, and both distances were seperately greater than that between the outlet of S1 from the spinal cord and the ganglion. The numbers of axons in the S1 VRs and L5 VRs were 13414.20 (± 2890.30) and 10613.20 (± 2135.58), respectively. The cross-sectional areas of the S1 VR and L5 VR were 1.68 (± 0.26) mm 2 and 1.08 (± 0.26) mm 2 , respectively. In conclusion, transfer of the contralateral S1 VR to the ipsilateral L5 VR may be an anatomically feasible treatment option for unilateral spastic lower limb paralysis.
Study Design. Eight cadavers were included in this anatomical study.Objective. This study aimed to confirm the anatomical feasibility of extradural transfer of the contralateral T11 ventral root (VR) to the ipsilateral L2 level and the contralateral L1 VR to the ipsilateral L3 level to restore lower limb function in cases of paraplegia. Summary of Background Data. Motor dysfunction due to hemiplegia significantly affects the daily life of patients. To date, unlike in cases of upper limb dysfunction, there are few studies on the surgical management of lower limb movement dysfunction. Materials and Methods. Eight cadavers were included in this study to confirm the feasibility of the nerve transfer. After separating the VR and dorsal root at each level, the VRs at the T11 and L1 levels were anastomosed with the VRs of L2 and L3, respectively. The length of the VRs of donor roots and the distance between the donor and recipient nerves were measured. H&E staining was performed to verify the number of axons and the cross-sectional area of the VRs. Lumbar x-rays of 60 healthy adults were used to measure the distance between the donor and recipient nerves. Results. After exposing the bilateral extradural each root, the VRs could be easily isolated from the whole root. The distance between the VRs of T11 and L2, L1, and L3 was significantly longer than the length of the donor nerve. Therefore, the sural nerve was used for grafting. The measurements performed on the lumbar x-rays of the 60 healthy adults confirmed the results. The number of axons and cross-sectional area of the VRs were measured. Conclusion.Our study confirmed the anatomical feasibility of transferring the VRs of T11 to L2 and that of L1 to L3 to restore lower limb function in cases of hemiplegia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.