A multifunctional PC10A/DOX/MoS2 hydrogel was designed and prepared for chemotherapy/photothermal therapy/photodynamic therapy of 4T1 tumor, and the immune responses triggered by photothermal and photodynamic effect of MoS2 nanosheet in the hydrogel were also studied. Positively charged DOX and negatively charged PC10A were loaded on the surface of MoS2 nanosheet through layer-by-layer method to prepare hybrid PC10A/DOX/MoS2 nanoparticles. PC10A/DOX/MoS2 nanoparticles were dispersed in PC10A hydrogel to prepare PC10A/DOX/MoS2 hydrogel. 2D MoS2 nanosheet in the hydrogel was simultaneously utilized as photothermal agent and photodynamic agent for the generation of hyperthermia and reactive oxygen species, respectively. This PC10A/DOX/MoS2 hydrogel was injectable and possessed excellent biocompatibility. The results of in vivo tumor-bearing mice experiments showed that a remarkably enhance tumor inhibition was observed by the combination of chemo-photothermal-photodynamic therapy compared with photothermal therapy, photodynamic therapy, or chemotherapy alone. In addition, the results of in vivo therapy exhibited that the PC10A/DOX/MoS2 hydrogel with laser irradiation could activate antitumor immune effects to suppress the growth of primary 4T1 breast tumors and distal lung metastatic nodules. Therefore, these results demonstrated that the PC10A/DOX/MoS2 hydrogel was promising to be utilized in antitumor immunity therapy triggered by photothermal therapy and photodynamic therapy for malignant tumor.
The immunosuppressive tumor microenvironment has caused great obstacles to tumor immunotherapy, especially less tumor-associated antigens released from tumor sites. Herein, Ag2S QD/DOX/Bestatin@PC10ARGD genetically engineered polypeptide hydrogel PC10ARGD as sustained-release material...
An injectable multifunctional hydrogel based on an engineered polypeptide, Ag2S quantum dots, and paclitaxel has been developed for sustained chemo-photothermal therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.