Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method.
In computer vision and multimedia analysis, it is common to use multiple features (or multimodal features) to represent an object. For example, to well characterize a natural scene image, we typically extract a set of visual features to represent its color, texture, and shape. However, it is challenging to integrate multimodal features optimally. Since they are usually high-order correlated, e.g., the histogram of gradient (HOG), bag of scale invariant feature transform descriptors, and wavelets are closely related because they collaboratively reflect the image texture. Nevertheless, the existing algorithms fail to capture the high-order correlation among multimodal features. To solve this problem, we present a new multimodal feature integration framework. Particularly, we first define a new measure to capture the high-order correlation among the multimodal features, which can be deemed as a direct extension of the previous binary correlation. Therefore, we construct a feature correlation hypergraph (FCH) to model the high-order relations among multimodal features. Finally, a clustering algorithm is performed on FCH to group the original multimodal features into a set of partitions. Moreover, a multiclass boosting strategy is developed to obtain a strong classifier by combining the weak classifiers learned from each partition. The experimental results on seven popular datasets show the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.