Steel plate shear walls (SPSW) structures have been widely employed in multistory residential buildings. The traditional welding process may lead to serious welding deformation due to the thinness of the plate. In this study, a new welding process is proposed to ensure that the stiffeners and SPSWs bend as a whole, and the number of welds is reduced from 3 to 2. This process has better integrity than the traditional process owing to less welding residual stress and deformation. On the basis of low-cycle reciprocating load tests on four full-scale specimens, the shear failure pattern, hysteresis characteristics, and load-carrying capacity of SPSWs affected by the new process are studied, and the new welding process used in the vertical stiffener can meet the requirements of shear capacity. The influences of various parameters on the shear resistance of the SPSWs made by the new welding process are compared and analyzed. The results indicate that the lateral stiffness of the frame and the width–height ratios of the wall significantly influence the load-carrying capacity of the SPSWs. The SPSWs adopting the new manufacturing process are numerically simulated using ANSYS software. The same conclusions can be obtained by comparing the numerical results with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.