Biological electron-transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multistep hopping. However, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecular structures and of the medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative. The distance dependence of FR transport thus mimics the exponential decay that is usually associated with electron tunneling, although FR transport involves real carrier population on the bridge and is not a tunneling phenomenon. Likely candidates for FR transport are macromolecules with ET groups in van der Waals contact: DNA, bacterial nanowires, multiheme proteins, strongly coupled porphyrin arrays, and proteins with closely packed redox-active residues. The theory developed here is used to analyze DNA charge-transfer kinetics, and we find that charge-transfer distances up to three to four bases may be accounted for with this mechanism. Thus, the observed rapid (exponential) distance dependence of DNA ET rates over distances of K K K K15 Å does not necessarily prove a tunneling mechanism.vibronic coupling | resonant tunneling pathways | superexchange | coherence | gated transport C hemical structure and, importantly, structural fluctuations determine the mechanism and kinetics of charge transfer. Redox energy fluctuations are of particular significance when transport barrier heights and the energy fluctuations are of similar magnitude. Indeed, the sensitivity of biological electrontransfer (ET) rates to conformational fluctuations and consequent (transient) delocalization is the topic of intense interest (1-3). Resonant enhancement of biological ET rates is consistent with a growing body of physical and structural data found in DNA ET through stacked nucleobases (4), extended delocalized structures of bacterial photosynthesis (including the special pair, bridging chlorophyll and pheophytin) (5), the polaronic states of oxidized porphyrin arrays up to seven porphyrin diameters in spatial extent (6), micrometer-scale bacterial nanowires (7, 8), multiheme oxidoreductases (9, 10), amino acid side chains in ribonucleotide reductase (11), engineered protein-based hopping-chains (12), and centimeter-scale charge-transport chains in filamentous bacteria (13). Here, we describe a transient or flickering resonance (FR) mechanism for ET. The FR mechanism arises when thermal fluctuations produce geometries that enable charge delocalization across the entire structure by bringing the donor (D), bridge (B), and acceptor (...
ConspectusThe image is not the thing. Just as a pipe rendered in an oil painting cannot be smoked, quantum mechanical coupling pathways rendered on LCDs do not convey electrons. The aim of this Account is to examine some of our recent discoveries regarding biological electron transfer (ET) and transport mechanisms that emerge when one moves beyond treacherous static views to dynamical frameworks.Studies over the last two decades introduced both atomistic detail and macromolecule dynamics to the description of biological ET. The first model to move beyond the structureless square-barrier tunneling description is the Pathway model, which predicts how protein secondary motifs and folding-induced through-bond and through-space tunneling gaps influence kinetics. Explicit electronic structure theory is applied routinely now to elucidate ET mechanisms, to capture pathway interferences, and to treat redox cofactor electronic structure effects. Importantly, structural sampling of proteins provides an understanding of how dynamics may change the mechanisms of biological ET, as ET rates are exponentially sensitive to structure. Does protein motion average out tunneling pathways? Do conformational fluctuations gate biological ET? Are transient multistate resonances produced by energy gap fluctuations? These questions are becoming accessible as the static view of biological ET recedes and dynamical viewpoints take center stage.This Account introduces ET reactions at the core of bioenergetics, summarizes our team’s progress toward arriving at an atomistic-level description, examines how thermal fluctuations influence ET, presents metrics that characterize dynamical effects on ET, and discusses applications in very long (micrometer scale) bacterial nanowires. The persistence of structural effects on the ET rates in the face of thermal fluctuations is considered. Finally, the flickering resonance (FR) view of charge transfer is presented to examine how fluctuations control low-barrier transport among multiple groups in van der Waals contact. FR produces exponential distance dependence in the absence of tunneling; the exponential character emerges from the probability of matching multiple vibronically broadened electronic energies within a tolerance defined by the rms coupling among interacting groups. FR thus produces band like coherent transport on the nanometer length scale, enabled by conformational fluctuations. Taken as a whole, the emerging context for ET in dynamical biomolecules provides a robust framework to design and interpret the inner workings of bioenergetics from the molecular to the cellular scale and beyond, with applications in biomedicine, biocatalysis, and energy science.
Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.Dexter energy transfer | triplet excitons | triplet energy transfer | two-particle coupling pathways | superexchange A compelling challenge in supramolecular chemistry is to direct the flow, fission, and fusion of excitons in molecular assemblies (1-4). When donor or acceptor species undergo a spin change during energy transfer, a two-particle or Dexter interaction enables the energy transfer because the Förster (dipoledipole) coupling is spin forbidden (5). Developing design principles for Dexter energy transfer is a considerable challenge compared with that of single-electron (hole) transfer because of the combinatorial growth in the number of mediating (virtual) two-particle states with system size (6-9). As with single-particle (electron or hole) transfer, Dexter energy transfer arises from donor-acceptor coupling mediated by molecular species (10). Here, we develop a coupling pathway theory for bridge-mediated Dexter energy transfer and explore the relative contributions of bridge and donor-acceptor charge-transfer excitons to the transport.A wide variety of critical chemical systems rely on bridgemediated Dexter transfer of triplet excitons. The lowest-energy electronic excited states of transition metal complexes used for solar-energy harvesting are often high spin, and the excitation energy usually flows to a low-spin ground state acceptor (3). In the electro-optics underpinning light-emitting diodes based on metal-containing chromophores, the exchange of energy between low-and high-spin excited states is crucial for device efficiency (11). As well, protection of biological light-harvesting machinery from damage induced by sensitized singlet oxygen formation relies on a Dexter energy transfer quenching mechanism (12). The strong dependence of the Dexter coupling...
The trion, a three-body charge-exciton bound state, offers unique opportunities to simultaneously manipulate charge, spin, and excitation in one-dimensional single-walled carbon nanotubes (SWNTs) at room temperature. Effective exploitation of trion quasi-particles requires fundamental insight into their creation and decay dynamics. Such knowledge, however, remains elusive for SWNT trion states, due to the electronic and morphological heterogeneity of commonly interrogated SWNT samples, and the fact that transient spectroscopic signals uniquely associated with the trion state have not been identified. Here, we prepare length-sorted SWNTs and precisely control charge-carrier-doping densities to determine trion dynamics using femtosecond pump-probe spectroscopy. Identification of the trion transient absorptive hallmark enables us to demonstrate that trions () derive from a precursor excitonic state, () are produced via migration of excitons to stationary hole-polaron sites, and () decay in a first-order manner. Importantly, under appropriate carrier-doping densities, exciton-to-trion conversion in SWNTs can approach 100% at ambient temperature. Our findings open up possibilities for exploiting trions in SWNT optoelectronics, ranging from photovoltaics and photodetectors to spintronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.