Publication informationMeccanica, 47 (7) Abstract -In machine defect detection, namely those of gears, the major problem is isolating the defect signature from the measured signal, especially where there is significant background noise or multiple machine components. This article presents a method of gear defect detection based on the combination of Wavelet Multi-resolution Analysis and the Hilbert transform. The pairing of these techniques allows simultaneous filtering and denoising, along with the possibility of detecting transitory phenomena, as well as a demodulation. This paper presents a numerical simulation of the requisite mathematical model followed by its experimental application of acceleration signals measured on defective gears on a laboratory test rig. Signals were collected under various gear operating conditions, including defect size, rotational speed, and frequency bandwidth. The proposed method compares favourably to commonly used analysis tools, with the advantage of enabling defect frequency isolation, thereby allowing detection of even small or combined defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.