Integral sliding mode design is considered for a class of uncertain systems in the presence of mismatched uncertainties in both state and input matrices, as well as norm-bounded nonlinearities and external disturbances. A sufficient condition for the robust stability of the sliding manifold is derived by means of linear matrix inequalities. The initial existence of the sliding mode is guaranteed by the proposed control law. The improvement of the proposed control scheme performances, such as chattering elimination and estimation of norm bounds of uncertainties, is then considered with the application of an adaptive fuzzy integral sliding mode control law. The validity and efficiency of the proposed approaches are investigated through a sixth order uncertain mechanical system.
This paper proposes a control approach for a class of electromechanical systems based on immersion and invariance method. Two cases are considered: full information system and unknown parameters existence. Thereafter, two controllers are, respectively, proposed: stabilization control and adaptive control. The effectiveness of the obtained control schemes is illustrated via simulation of an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.