The rheological behavior of poly(vinyl pyrrolidone) (PVP)/N,N‐dimethylformamide (DMF) solutions containing metal chlorides (LiCl, CaCl2, and CoCl2) were investigated, and the results showed that the nature of the metal ions and their concentration had an obvious effect on the steady‐state rheological behavior of PVP–DMF solutions with different molecular weights. The apparent viscosity of the PVP–DMF solutions increased with an increasing metal‐ion concentration, and the viscosity increment was dependent on the metal‐ion variety. For a CaCl2‐containing PVP–DMF solution, for example, the critical shear rate at the onset of shear thinning became smaller with increasing CaCl2 concentration. It was believed that multiple interactions among metal ions, carbonyl groups of PVP, and amide groups in DMF determined the solution properties of these complex fluids; therefore, 13C NMR spectroscopy was used to detect the interactions in systems of PVP–CaCl2–DMF and PVP–LiCl–DMF solutions. NMR data showed that there were obvious interactions between the metal ions and the carbonyl groups of the PVP segments in the DMF solutions. Furthermore, IR spectra of the PVP/metal chloride composites demonstrated that the interaction between the metal ions and carbonyl groups in the PVP unit occurred and that the PVP chain underwent conformational variations with the metal‐ion concentration. DSC results indicated that the glass transition temperatures of the PVP/metal chloride composites increased with the addition of metal ions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1589–1598, 2007
To improve the heat resistance of polyester‐based thermoplastic polyurethane (TPU), in the present work, polyamide 1212 (PA1212) was chosen as a modifier and a series of TPU/PA1212 blends with different compositions were prepared using a twin screw extruder. The solubility parameters, characteristic of chemical structures, hydrogen‐bonding interaction, as well as interfacial tension of the single component and blends were taken into account to describe the good compatibility of TPU/PA1212 blends. The effect of PA1212 content on the rheological behaviors, morphology, mechanical, and thermal properties of TPU/PA1212 blends were systematically investigated with scanning electron microscope, tensile strength measurement, thermal gravimetry analysis, differential scanning calorimetry, and Vicat softening temperature (VST). The results showed that PA1212 formed submicron dispersion domains in the TPU matrix, indicating good compatibility between TPU and PA1212. A slight increase of the tensile strength was achieved as PA1212 content is relatively low. Because of the strong hydrogen‐bonding interaction between TPU and PA1212, the thermal stability of the blends is improved, and VST values rise up from about 80 (pure TPU) to 100°C, showing attractive potential application. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.