In order to solve the problem of roadway deformation based on the theory of “short cantilever beam by roof cutting,” the method of “pressure relief by roof cutting in the adjacent roadway” is proposed. Through presplitting blasting the roadway hard rock layer, the stress propagation path is cut off, and the surrounding rock stress environment of the roadway is improved, to achieve the purpose of controlling the deformation of the roadway caused by stress. Through theoretical analysis, it is determined that the depth of the presplitting blasthole is 17 m, and the angle with the vertical direction is 10°. Based on in situ measurements and tests, by presplitting blasting the roof strata of the adjacent roadway, the maximal value of the working resistance of the hydraulic support in the presplitting blasting side of the working face decreased by 24.9%, and the average volumes of the maximum floor heave, the maximum roof subsidence, and the maximum ribs displacement were reduced by 50.1%, 34.9%, and 41.7%, respectively. This method completely changes the traditional thought patterns of “reinforcing support” to control roadway deformation from “strong support” to “pressure relief.” It provides a new idea for controlling the roadway deformation.
The effective control of large roadway deformations has always been a focus and difficulty in the coal industry. At present, a “bolt + cable + mesh + shotcrete” combined support structure has been widely used in China to support roadways with large deformations, and this method has achieved some success. However, large roadway deformations supported by using the “bolt + cable + mesh + shotcrete” support structure still have a series of engineering problems. This paper describes a case study of large deformation control in a roadway surrounded with broken rock located in the Du’erping coal mine in the Shanxi Province of China. A new “shell + bolt + shotcrete” combined support structure is proposed to support the north wing main haulage roadway. Methods were adopted from theoretical analysis, numerical simulation, and similarity simulation experiments to design a reinforced shell within a vertical wall semicircular arch. Roadway convergence and surrounding rock stress were monitored on the site. The monitoring data showed that the new support structure successfully controlled a potentially large deformation of the roadway. This new combined support structure provides a helpful reference for the design and engineering of support structures to prevent large roadway deformations.
As the mining depth increases, under the influence of high ground stress, the surrounding rock of deep mine roadways shows soft rock characteristics. Under the influence of mining disturbance at the working face, large deformation of the roadway has occurred. To control the large deformation of the roadway, many mines have adopted the form of combined support, which has continuously increased the support strength and achieved a certain effect. However, since the stress environment of the surrounding rock of the roadway has not been changed, large deformation of the roadway still occurs in many cases. Based on the theoretical basis of academician Manchao He’s “short cantilever beam by roof cutting,” this paper puts forward the plan of “presplitting blasting + combined support” to control the large deformation of the deep mine roadways. Without changing the original support conditions of the roadway, presplitting blasting the roof strata of the roadway, by cutting off the mechanical connection of the roof strata between the roadway and gob, improves the stress distribution of the roadway to control the large deformation. Through field tests, the results show that after presplitting blasting the roadway roof, the roadway roof subsidence is reduced by 47.9%, the ribs displacement is reduced by 45.7%, and the floor heave volume is reduced by 50.8%. The effect is significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.