Th17 cells are a subset of CD4+ T cells known to play a central role in the pathogenesis of many autoimmune diseases, as well as in the defense against some extracellular bacteria and fungi. However, Th17 cells are not believed to have a significant function against intracellular infections. In contrast to this paradigm, we have discovered that Th17 cells provide robust protection against Trypanosoma cruzi, the intracellular protozoan parasite that causes Chagas disease. Th17 cells confer significantly stronger protection against T. cruzi-related mortality than even Th1 cells, traditionally thought to be the CD4+ T cell subset most important for immunity to T. cruzi and other intracellular microorganisms. Mechanistically, Th17 cells can directly protect infected cells through the IL-17A-dependent induction of NADPH oxidase, involved in the phagocyte respiratory burst response, and provide indirect help through IL-21-dependent activation of CD8+ T cells. The discovery of these novel Th17 cell-mediated direct protective and indirect helper effects important for intracellular immunity highlights the diversity of Th17 cell roles, and increases understanding of protective T. cruzi immunity, aiding the development of therapeutics and vaccines for Chagas disease.
Nucleos(t)ide analog drugs profoundly suppress Hepatitis B Virus (HBV) replication but rarely cure the infection, so therapy is usually life-long. The nucleos(t)ide analogs inhibit the viral DNA polymerase and often push HBV to the brink of extinction, so it may be possible to eradicate HBV by suppressing HBV replication further. The HBV ribonuclease H (RNaseH) is a logical new drug target because it is the second of only two viral enzymes essential for viral replication. We recently developed a low throughput screening pipeline for inhibitors of the HBV RNaseH and viral replication. Here, we screened a series of twenty-three nitrogen-based polyoxygenated heterocycles including sixteen 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives for anti-HBV RNaseH activity. Nine compounds inhibited the HBV RNaseH, but activity was marginal for eight of them. Compound #1 [2-hydroxyisoquinoline-1,3(2H,4H)-dione, HID] was the best hit with an IC50 of 28.1 µM and an EC50 of 4.2 µM. It preferentially suppressed accumulation of the viral plus-polarity DNA strand in replication inhibition assays, indicating that replication was blocked due to suppression of HBV RNaseH activity. It had a CC50 of 75 µM, yielding a therapeutic index of ~18. The EC50 value was 7-fold lower than the IC50, possibly due to cellular retention or metabolism of the compound, or higher affinity for the full-length enzyme than the recombinant form used for screening. These data indicate that the 2-hydroxyisoquinoline-1,3(2H,4H)-diones will have different structure-activity relationships for the HBV and HIV RNaseHs. Therefore, HID compounds may provide a foundation for development of more effective RNaseH inhibitors of HBV replication.
Gene-environment interactions mediated at the epigenetic level may provide an initial step in delivering an appropriate response to environmental changes. 5-hydroxymethylcytosine (5hmC), a DNA base derived from 5-methylcytosine (5mC), accounts for ~40% of modified cytosine in brain and has been implicated in DNA methylation-related plasticity. To identify the role of 5hmC in gene-environment interactions, we exposed both young (6-week-old) and aged (18-month-old) mice to both an enriched environment and a standard environment. Exposure to EE significantly improves learning and memory in aged mice and reduces 5hmC abundance in mouse hippocampus. Furthermore, we mapped the genome-wide distribution of 5hmC and found that the alteration of 5hmC modification occurred mainly at gene bodies. In particular, genes involved in axon guidance are enriched among the genes with altered 5hmC modification. These results together suggest that environmental enrichment could modulate the dynamics of 5hmC in hippocampus, which could potentially contribute to improved learning and memory in aged animals.
Background & AimsAtrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A) in causing parietal cell atrophy.MethodsA mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia.ResultsIncreased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis.ConclusionsThese data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a precursor lesion for gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.