In most bacteria acetate assimilation is accomplished via the glyoxylate pathway. Isocitrate lyase (ICL) and malate synthase (MS) are two key enzymes of this pathway, which results in the net generation of one molecule of succinyl-CoA from two acetyl-CoA molecules. Genetic and biochemical data have shown that genes encoding these key enzymes are present in streptomycetes, yet there has been no clear demonstration of the importance of these genes to acetate assimilation. In fact, for Streptomyces collinus an alternative butyryl-CoA pathway has been shown to be critical for growth on acetate as a sole carbon source. Crotonyl-CoA reductase (CCR) is a key enzyme in this pathway and catalyzes the last step of the conversion of 2-acetyl-CoA molecules to butyryl-CoA. In Streptomyces cinnamonensis C730.1, it has been shown that CCR and this butyryl-CoA pathway provide the majority of methylmalonyl-CoA and ethylmalonyl-CoA for monensin A biosynthesis in an oil-based fermentation medium. We have cloned a MS homologue gene from this strain. Reverse transcription and direct enzyme assays demonstrated that neither this nor other MS genes were expressed during fermentation in an oil-based fermentation of either the C730.1 or L1 strain (a ccr mutant). Similarly, no ICL activity could be detected. The C730.1 but not the L1 strain was able to grow on acetate as a sole carbon source. The Streptomyces coelicolor aceA and aceB2 genes encoding ICL and MS were cloned into a Streptomyces expression plasmid (a derivative of pSET152) to create pExIM1. Enzyme assays and transcript analyses demonstrated expression of both of these proteins in C730.1/pExIM1 and L1/pExIM1 grown in an oil-based fermentation and tryptic soy broth media. Nonetheless, L1/pExIM1, like L1, was unable to grow on acetate as a sole carbon source, and was unable to efficiently generate precursors for monensin A biosynthesis in an oil-based fermentation, indicating that the additional presence of these two enzyme activities does not permit a functional glyoxylate cycle to occur. UV mutagenesis of S. cinnamonensis L1 and L1/pExIM1 led to mutants which were able to grow efficiently on acetate despite a block in the butyryl-CoA pathway. Analysis of enzyme activity and monensin production from these mutants in an oil-based fermentation demonstrated that neither the glyoxylate cycle nor the butyryl-CoA pathway function, suggesting the possibility of alternative pathways of acetate assimilation.
The msdA gene encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is known to be involved in valine catabolism in Streptomyces coelicolor. Using degenerative primers, a homolog of msdA gene was cloned and sequenced from the monensin producer, Streptomyces cinnamonensis. RT-PCR results showed msdA was expressed in a vegetative culture, bump-seed culture and the early stages of oil-based monensin fermentation. However, isotopic labeling of monensin A by [2, 4-(13)C(2)]butyrate revealed that this MSDH does not play a role in providing precursors such as methylmalonyl-CoA for the monensin biosynthesis under these fermentation conditions. Using a PCR-targeting method, msdA was disrupted by insertion of an apramycin resistance gene in S. cinnamonensis C730.1. Fermentation results revealed that the resulting DeltamsdA mutant (CXL1.1) produced comparable levels of monensin to that observed for C730.1. This result is consistent with the hypothesis that butyrate metabolism in S. cinnamonensis in the oil-based fermentation is not mediated by msdA, and that methylmalonyl-CoA is probably produced through direct oxidation of the pro-S methyl group of isobutyryl-CoA. The CXL1.1 mutant and C730.1 were both able to grow in minimal medium with valine or butyrate as the sole carbon source, contrasting previous observations for S. coelicolor which demonstrated msdA is required for growth on valine. In conclusion, loss of the S. cinnamonensis msdA neither affects valine catabolism in a minimal medium, nor butyrate metabolism in an oil-based medium, and its role remains an enigma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.