Multi-source domain adaptation has attracted great attention in machine learning community. Most of these methods focus on weighting the predictions produced by the adaptation networks of different domains. Thus the domain shifts between certain of domains and target domain are not effectively relieved, resulting in that these domains are not fully exploited and even may have a negative influence on multi-source domain adaptation task. To address such challenge, we propose a multi-source domain adaptation method to gradually improve the adaptation ability of each source domain by producing more high-confident pseudo-labels with self-paced learning for conditional distribution alignment. The proposed method first trains several separate domain branch networks with single domains and an ensemble branch network with all domains. Then we obtain some high-confident pseudo-labels with the branch networks and learn the branch specific pseudo-labels with self-paced learning. Each branch network reduces the domain gap by aligning the conditional distribution with its branch specific pseudo-labels and the pseudo-labels provided by all branch networks. Experiments on Office31, Office-Home and DomainNet show that the proposed method outperforms the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.