Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC).Here, we investigated the effect of PNI on the microenvironment and how this affects PDAC progression. Transcriptome expression profiles of PDAC tissues with different PNI status were compared, and the intratumoral T cell density and levels of neurotransmitters in these tissues were assessed. PNI was associated with impaired immune responses characterized by decreased CD8+ T and Th1 cells, and increased Th2 cells. Acetylcholine levels were elevated in severe PNI.Acetylcholine impaired the ability of PDAC cells to recruit CD8+ T cells via HDAC1-mediated suppression of CCL5. Moreover, acetylcholine directly inhibited IFN-γ production by CD8+ T cells in a dose-dependent manner, and favored Th2 over Th1 differentiation. Furthermore, hyperactivation of cholinergic signaling enhanced tumor growth by suppressing the intratumoral T cell response in an orthotopic PDAC model. Conversely, blockingResearch.
Rationale: Endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) is an endoplasmic reticulum (ER) luminal glycoprotein that has a role in the formation of disulfide bonds of secreted proteins and membrane proteins. Emerging data identify ERO1L as a tumor promoter in a wide spectrum of human malignancies. However, its molecular basis of oncogenic activities remains largely unknown. Methods: Pan-cancer analysis was performed to determine the expression profile and prognostic value of ERO1L in human cancers. The mechanism by which ERO1L promotes tumor growth and glycolysis in pancreatic ductal adenocarcinoma (PDAC) was investigated by cell biological, molecular, and biochemical approaches. Results: ERO1L was highly expressed in PDAC and its precursor pancreatic intraepithelial neoplasia and acts as an independent prognostic factor for patient survival. Hypoxia and ER stress contributed to the overexpression pattern of ERO1L in PDAC. ERO1L knockdown or pharmacological inhibition with EN460 suppressed PDAC cell proliferation in vitro and slowed tumor growth in vivo . Ectopic expression of wild type ERO1L but not its inactive mutant form EROL-C394A promoted tumor growth. Bioinformatics analyses and functional analyses confirmed a regulatory role of ERO1L on the Warburg effect. Notably, inhibition of tumor glycolysis partially abrogated the growth-promoting activity of ERO1L. Mechanistically, ERO1L-mediated ROS generation was essential for its oncogenic activities. In clinical samples, ERO1L expression was correlated with the maximum standard uptake value (SUVmax) in PDAC patients who received 18 F-FDG PET/CT imaging preoperatively. Analysis of TCGA cohort revealed a specific glycolysis gene expression signature that is highly correlated with unfolded protein response-related gene signature. Conclusion: Our findings uncover a key function for ERO1L in Warburg metabolism and indicate that targeting this pathway may offer alternative therapeutic strategies for PDAC.
Hypoxia and the hypovascular tumor microenvironment are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is of great importance to tumor survival and proliferation. There is little research regarding the role of Nuclear Factor of Activated T Cells 5 (NFAT5) in relation to carcinoma. Here, we explored the impact of NFAT5 on the biological behavior of PDAC and the underlying mechanism. We demonstrated that NFAT5 was highly expressed in PDAC and was related to poorer prognosis. Knockdown of NFAT5 lead to impaired proliferation of tumor cells caused by an aberrant Warburg effect. Mechanically, phosphoglycerate kinase 1 (PGK-1), which is the first enzyme generating ATP in glycolysis, was verified as a target gene of NFAT5. Over-expression of PGK1 compromised the aberrant oncological behavior caused by knockdown of NFAT5 both in vitro and in vivo. Clinical samples underwent positron emission tomography-computed tomography (PET-CT) examination and KrasG12D/+/Trp53R172H/+/Pdx1-Cre (KPC) mice were collected to support our conclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.