Raman characterization of aligned carbon nanotubes of average diameter 10–15 nm, produced by chemical vapor deposition on a mesoporous substrate, has been carried out. The resonance behavior and higher-order Raman bands up to fourth order have been observed and compared with those of carbon nanotubes produced by arc discharge and highly oriented pyrolytic graphite, as well as pyrolytic graphite. The phonon properties have been analyzed with the help of high-resolution transmission electron microscope studies.
The size‐ and morphology‐controlled growth of ZnO nanowire (NW) arrays is potentially of interest for the design of advanced catalysts and nanodevices. By adjusting the reaction temperature, shelled structures of ZnO made of bunched ZnO NW arrays are prepared, grown out of metallic Zn microspheres through a wet‐chemical route in a closed Teflon reactor. In this process, ZnO NWs are nucleated and subsequently grown into NWs on the surfaces of the microspheres as well as in strong alkali solution under the condition of the pre‐existence of zincate (ZnO22–) ions. At a higher temperature (200 °C), three different types of bunched ZnO NW or sub‐micrometer rodlike (SMR) aggregates are observed. At room temperature, however, the bunched ZnO NW arrays are found only to occur on the Zn microsphere surface, while double‐pyramid‐shaped or rhombus‐shaped ZnO particles are formed in solution. The ZnO NWs exhibit an ultrathin structure with a length of ca. 500 nm and a diameter of ca. 10 nm. The phenomenon may be well understood by the temperature‐dependent growth process involved in different nucleation sources. A growth mechanism has been proposed in which the degree of ZnO22–saturation in the reaction solution plays a key role in controlling the nucleation and growth of the ZnO NWs or SMRs as well as in oxidizing the metallic Zn microspheres. Based on this consideration, ultrathin ZnO NW cluster arrays on the Zn microspheres are successfully obtained. Raman spectroscopy and photoluminescence measurements of the ultrathin ZnO NW cluster arrays have also been performed.
In this work, a paramagnetic nanofibrous composite film was fabricated with poly lactide, hydroxyapatite and γ-Fe(2)0(3) nanoparticles using the electrospinning technique. The composite film significantly enhanced the proliferation, differentiation and ECM secretion of the osteoblast cells under a static magnetic field, which offers promising application potentials in bone tissue engineering and bone regeneration therapy.
Carbon nanotubes have attracted intensive interests in biomedical research in recent years. In this study, a novel type of carbon nanotubes material so called nonwoven single-walled carbon nanotubes (SWNTs) with nanotopographic structure and macroscopic volume was used as cell growing scaffold. The morphology and surface chemistry of nonwoven SWNTs were observed and characterized through scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The cells were cultivated in nonwoven SWNTs and in other types of substrate as control. The cells growth behaviors including adhesion, proliferation, and cytoskeletal development was investigated by using cell viability assay and confocal observation. The experimental results indicated that nonwoven SWNTs exhibited significant enhancement to the cells adhesion and proliferation in at least 3 weeks. Numerous and highly organized cytoskeletal structures were observed when the cells were cultured in nonwoven SWNTs. Furthermore, an obvious promotional influence of the cells cultivated in nonwoven SWNTs scaffold upon the proliferation of those growing in the other kind of substrate through cell-cell communication had been found. The results obtained in this work are of significance to in vitro cell amplification in large scale, tissue regeneration, or guided repair, as well as biomedical device application.
Responses of bald cypress (Taxodium distichum) and pond cypress (Taxodium ascendens) saplings in photosynthesis and growth to long-term periodic submergence in situ in the hydro-fluctuation zone of the Three Gorges Dam Reservoir (TGDR) were studied. Water treatments of periodic deep submergence (DS) and moderate submergence (MS) in situ were imposed on 2-year-old bald cypress and pond cypress saplings. The effects of periodic submergence on photosynthesis and growth were investigated after 3 years (i.e. 3 cycles) compared to a control (i.e. shallow submergence, abbreviated as SS). Results showed that pond cypress had no significant change in net photosynthetic rate (Pn) in response to periodic moderate and deep submergence in contrast to a significant decrease in Pn of bald cypress under both submergence treatments, when compared to that of SS. Ratios of Chlorophyll a/b and Chlorophylls/Carotenoid of pond cypress were significantly increased in periodic moderate submergence and deep submergence, while bald cypress showed no significant change. Diameter at breast height (DBH) and tree height of both species were significantly reduced along with submergence depth. Relative diameter and height growth rates of the two species were also reduced under deeper submergence. Moreover, bald cypress displayed higher relative diameter growth rate than pond cypress under deep submergence mainly attributed to higher productivity of the larger crown area of bald cypress. When subjected to deep subergence, both species showed significant reduction in primary branch number, while in moderate submergence, bald cypress but not pond cypress showed significant reduction in primary branch number. These results indicate that both bald cypress and pond cypress are suitbale candidates for reforestation in the TGDR region thanks to their submergence tolerance characteristics, but bald cypress can grow better than pond cypress under deep submergence overall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.