Coronary artery disease (CAD) is a life-threatening condition that, unless treated at an early stage, can lead to congestive heart failure, ischemic heart disease, and myocardial infarction. Early detection of diagnostic features underlying electrocardiography signals is crucial for the identification and treatment of CAD. In the present work, we proposed novel entropy called Renyi Distribution Entropy (RdisEn) for the analysis of short-term heart rate variability (HRV) signals and the detection of CAD. Our simulation experiment with synthetic, physiological, and pathological signals demonstrated that RdisEn could distinguish effectively among different subject groups. Compared to the values of sample entropy or approximation entropy, the RdisEn value was less affected by the parameter choice, and it remained stable even in short-term HRV. We have developed a combined CAD detection scheme with RdisEn and wavelet packet decomposition (WPD): (1) Normal and CAD HRV beats obtained were divided into two equal parts. (2) Feature acquisition: RdisEn and WPD-based statistical features were calculated from one part of HRV beats, and student’s t -test was performed to select clinically significant features. (3) Classification: selected features were computed from the remaining part of HRV beats and fed into K-nearest neighbor and support vector machine, to separate CAD from normal subjects. The proposed scheme automatically detected CAD with 97.5% accuracy, 100% sensitivity and 95% specificity and performed better than most of the existing schemes.
Sudden cardiac death (SCD), which can deprive a person of life within minutes, is a destructive heart abnormality. Thus, providing early warning information for patients at risk of SCD, especially those outside hospitals, is essential. In this study, we investigated the performances of ensemble empirical mode decomposition (EEMD)-based entropy features on SCD identification. EEMD-based entropy features were obtained by using the following technology: (1) EEMD was performed on HRV beats to decompose them into intrinsic mode functions (IMFs), (2) five entropy parameters, namely Rényi entropy (RenEn), fuzzy entropy (FuEn), dispersion Entropy (DisEn), improved multiscale permutation entropy (IMPE), and Renyi distribution entropy(RdisEn), were computed from the first four IMFs obtained, which were named EEMD-based entropy features. Additionally, an automated scheme combining EEMD-based entropy and classical linear (time and frequency domains) features was proposed with the intention of detecting SCD early by analyzing 14 min (at seven successive intervals of 2 min) heart rate variability (HRV) in signals from a normal population and subjects at risk of SCD. Firstly, EEMDbased entropy and classical linear measurements were extracted from HRV beats, and then the integrated measurements were ranked by various methodologies, i.e., t-test, entropy, receiver-operating characteristics (ROC), Wilcoxon, and Bhattacharyya. Finally, these ranked features were fed into a k-Nearest Neighbor algorithm for classification. Compared with several state-of-the-art methods, the proposed scheme firstly predicted subjects at risk of SCD up to 14 min earlier with an accuracy of 96.1%, a sensitivity of 97.5%, and a specificity of 94.4% 14 min before SCD onset. The simulation results exhibited that EEMD-based entropy estimators showed significant difference between SCD patients and normal individuals and outperformed the classical linear estimators
The phenotype–genotype relationship is a key for personalized and precision medicine for complex diseases. To unravel the complexity of the clinical phenotype–genotype network, we used cardiovascular diseases (CVDs) and associated non-coding RNAs (ncRNAs) (i.e. miRNAs, long ncRNAs, etc.) as the case for the study of CVDs at a systems or network level. We first integrated a database of CVDs and ncRNAs (CVDncR, http://sysbio.org.cn/cvdncr/) to construct CVD–ncRNA networks and annotate their clinical associations. To characterize the networks, we then separated the miRNAs into two groups, i.e. universal miRNAs associated with at least two types of CVDs and specific miRNAs related only to one type of CVD. Our analyses indicated two interesting patterns in these CVD–ncRNA networks. First, scale-free features were present within both CVD–miRNA and CVD–lncRNA networks; second, universal miRNAs were more likely to be CVDs biomarkers. These results were confirmed by computational functional analyses. The findings offer theoretical guidance for decoding CVD–ncRNA associations and will facilitate the screening of CVD ncRNA biomarkers. Database URL: http://sysbio.org.cn/cvdncr/
Motivation Heart failure (HF) is a cardiovascular disease with a high incidence around the world. Accumulating studies have focused on the identification of biomarkers for HF precision medicine. To understand the HF heterogeneity and provide biomarker information for the personalized diagnosis and treatment of HF, a knowledge database collecting the distributed and multiple-level biomarker information is necessary. Results In this study, the HF biomarker knowledge database (HFBD) was established by manually collecting the data and knowledge from literature in PubMed. HFBD contains 2618 records and 868 HF biomarkers (731 single and 137 combined) extracted from 1237 original articles. The biomarkers were classified into proteins, RNAs, DNAs, and the others at molecular, image, cellular and physiological levels. The biomarkers were annotated with biological, clinical and article information as well as the experimental methods used for the biomarker discovery. With its user-friendly interface, this knowledge database provides a unique resource for the systematic understanding of HF heterogeneity and personalized diagnosis and treatment of HF in the era of precision medicine. Availability The platform is openly available at http://sysbio.org.cn/HFBD/.
Myocardial infarction (MI) is a common cardiovascular disease and a leading cause of death worldwide. The etiology of MI is complicated and not completely understood. Many risk factors are reported important for the development of MI, including lifestyle factors, environmental factors, psychosocial factors, genetic factors, etc. Identifying individuals with an increased risk of MI is urgent and a major challenge for improving prevention. The MI risk knowledge base (MIRKB) is developed for facilitating MI research and prevention. The goal of MIRKB is to collect risk factors and models related to MI to increase the efficiency of systems biological level understanding of the disease. MIRKB contains 8436 entries collected from 4366 articles in PubMed before 5 July 2019 with 7902 entries for 1847 single factors, 195 entries for 157 combined factors and 339 entries for 174 risk models. The single factors are classified into the following five categories based on their characteristics: molecular factor (2356 entries, 649 factors), imaging (821 entries, 252 factors), physiological factor (1566 entries, 219 factors), clinical factor (2523 entries, 561 factors), environmental factor (46 entries, 26 factors), lifestyle factor (306 entries, 65 factors) and psychosocial factor (284 entries, 75 factors). MIRKB will be helpful to the future systems level unraveling of the complex mechanism of MI genesis and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.