The objective of this study was to explore whether collecting rumen samples of finishing steers at monthly intervals differed, and whether this difference or similarity varied with diets. For these purposes, 12 Chinese Holstein steers were equally divided into two groups. The dietary treatments were either standard energy and standard protein (C) or low energy and low protein (L). Rumen samples were obtained on day 30, day 60 and day 90 from both dietary treatments and were analyzed by using 16S rRNA gene sequencing. The results showed that monthly intervals had no effect on the richness and evenness of the rumen bacterial community in the two diets. However, taxonomic difference analysis (relative abundance >0.5%) revealed that the relative abundance of three phyla (Proteobacteria, Fibrobacteres and Cyanobacteria) and six genera (Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Fibrobacter, Eubacterium_coprostanoligenes_group, Ruminococcaceae_UCG-010 and Ruminobacter) were significantly different between monthly sampling intervals, and the difference was prominent between sampling in the first month and the subsequent two months. Moreover, the differences in abundances of phyla and genera between monthly sampling intervals were affected by diets. Analysis of similarity (ANOSIM) showed no significant differences between monthly sampling intervals in the C diet. However, ANOSIM results revealed that significant differences between the first month and second month and between the first month and third month were present in the L diet. These results indicated that temporal dynamics in rumen bacterial community composition did occur even after an adaptation period of three months. This study tracked the changes in rumen bacterial populations of finishing cattle after a shift in diet with the passage of time. This study may provide insight into bacterial adaptation time to dietary transition in finishing steers.
The aim of this study is to track the dynamic alterations in nutrient intake and digestion, rumen fermentation and plasma metabolic characteristics, and rumen bacterial community of Holstein finishing steers in response to three nutrient density diets as fattening phases advanced. A total of eighteen Holstein steers were randomly allocated into three nutrient density groups and steers in each group were fed under a three-phase fattening strategy, with nutrient density increased in each group when fattening phase advanced. Results showed that both fattening phase and dietary nutrient density significantly influenced the nutrient digestion, most of the rumen fermentation parameters, and part of bacteria at phylum and genus levels. Individually, dietary nutrient density affected the concentrations of plasma alanine aminotransferase and urea N, bacterial richness and evenness. All determined nutrient intake and plasma biochemical parameters, except for alanine aminotransferase and triglyceride, differed among fattening phases. Spearman correlation analysis revealed strong correlations between fiber intake and bacterial richness and evenness, rumen fermentation characteristics and certain bacteria. Moreover, Patescibacteria abundance was positively correlated with ambient temperature and plasma total protein. These results indicate that rumen fermentation and nutrient digestion were influenced by both dietary nutrient density and fattening phase, and these influences were regulated by certain rumen bacterial community and ruminal bacteria may be affected simultaneously by ambient temperature. This study may provide insights into diet optimization and potentially adaptive mechanism of rumen bacterial community in response to fattening phases and gradually climatic change.
The objective of this study was to track the dynamic variations in fecal bacterial composition and fermentation profile of finishing steers in response to three stepwise diets varied in energy and protein density. A total of 18 Holstein steers were divided into three groups in such a way that each group contained six animals and received one of three stepwise dietary treatments. Dietary treatments were C = standard energy and protein diet, H = high energy and protein diet, and L = low energy and protein diet. Animals were fattened for 11 months with a three-phase fattening strategy. Fecal samples were collected to evaluate the dynamics of fecal fermentation and bacterial composition in response to dietary treatments and fattening phases using 16S rRNA gene sequencing. Fecal acetate, propionate, and butyrate increased with increasing density of diet and as the fattening phase continued. The relative abundances of Firmicutes and Bacteroidetes dominated and showed 56.19% and 33.58%, respectively. Higher dietary density decreased the fecal bacterial diversity, Firmicutes to Bacteroidetes ratio, and the relative abundances of Ruminococcaceae_UCG-005, Rikenellaceae_RC9_gut_group, and Bacteroides, whereas higher dietary density increased the abundance of Prevotella_9. Our results indicated that both fecal fermentation profile and bacterial composition share a time-dependent variation in response to different dietary densities. This knowledge highlights that both diet and fattening phase impact fecal fermentation profile and bacterial composition, and may provide insight into strategies to reduce fecal contamination from the origin by optimizing diet and fattening time.
The objective of this study was to evaluate the effect of different dietary densities on growth performance, carcass characteristics, meat quality, serum metabolism, ruminal papillae morphology and liver injuries of steers. For this purpose, a total of eighteen Holstein steers were randomly fed one of the three diets: high energy and protein diet (H), standard energy and protein diet (C), and low energy and protein diet (L) for 11 months fattening with three‐step finishing strategy. Steers fed with H diet had higher (p < .05) average daily gain, feed efficiency, hot carcass weight, serum aspartate aminotransferase to alanine aminotransferase ratio, and monounsaturated fatty acids along with continuous low ruminal pH value, severer hepatic steatosis and ruminal papillae parakeratosis. Meanwhile, steers fed L diet increased the proportion of C20:0, C22:6n‐3, saturated fatty acids and n‐3 polyunsaturated fatty acids along with lower n‐6 to n‐3 ratio in longissimus dorsi muscle as compared to that of steers fed H diet. Dietary densities did not influence (p > .10) proximate nutrients and sensory characteristics of beef. The present study indicates that Holstein steers could achieve better growth and carcass performance under high‐density diet, whereas they are under threat of visceral injuries and metabolic disorders. This study gives comprehensive relationship between productivity and animal health and suggests that a proper diet should be adopted for fattening Holstein steers in consideration of both beef quality and quantity and animal health.
In recent years, the scale of knowledge graphs and the number of entities have grown rapidly. Entity matching across different knowledge graphs has become an urgent problem to be solved for knowledge fusion. With the importance of entity matching being increasingly evident, the use of representation learning technologies to find matched entities has attracted extensive attention due to the computability of vector representations. However, existing studies on representation learning technologies cannot make full use of knowledge graph relevant multi-modal information. In this paper, we propose a new cross-lingual entity matching method (called CLEM) with knowledge graph representation learning on rich multi-modal information. The core is the multi-view intact space learning method to integrate embeddings of multi-modal information for matching entities. Experimental results on cross-lingual datasets show the superiority and competitiveness of our proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.