Long non-coding RNAs (lncRNAs) have recently been shown as novel promising diagnostic or prognostic biomarkers for various cancers. However, lncRNA expression patterns and their predictive value in early diagnosis of myocardial infarction (MI) have not been systematically investigated. In our study, we performed a comprehensive analysis of lncRNA expression profiles in MI and found altered lncRNA expression pattern in MI compared to healthy samples. We then constructed a lncRNA-mRNA dysregulation network (DLMCEN) by integrating aberrant lncRNAs, mRNAs and their co-dysregulation relationships, and found that some of mRNAs were previously reported to be involved in cardiovascular disease, suggesting the functional roles of dysregulated lncRNAs in the pathogenesis of MI. Therefore, using support vector machine (SVM) and leave one out cross-validation (LOOCV), we developed a 9-lncRNA signature (termed 9LncSigAMI) from the discovery cohort which could distinguish MI patients from healthy samples with accuracy of 95.96%, sensitivity of 93.88% and specificity of 98%, and validated its predictive power in early diagnosis of MI in another completely independent cohort. Functional analysis demonstrated that these nine lncRNA biomarkers in the 9LncSigAMI may be involved in myocardial innate immune and inflammatory response, and their deregulation may lead to the dysfunction of the inflammatory and immune system contributing to MI recurrence. With prospective validation, the 9LncSigAMI identified by our work will provide additional diagnostic information beyond other known clinical parameters, and increase the understanding of the molecular mechanism underlying the pathogenesis of MI.
SUMMARY Visual tracking is an essential building block for target tracking and capture of the underwater vehicles. On the basis of remotely autonomous control architecture, this paper has proposed an improved kernelized correlation filter (KCF) tracker and a novel fuzzy controller. The model is trained to learn an online correlation filter from a plenty of positive and negative training samples. In order to overcome the influence from occlusion, the improved KCF tracker has been designed with an added self-discrimination mechanism based on system confidence uncertainty. The novel fuzzy logic tracking controller can automatically generate and optimize fuzzy rules. Through Q-learning algorithm, the fuzzy rules are acquired through the estimating value of each state action pairs. An S surface based fitness function has been designed for the improvement of learning based particle swarm optimization. Tank and channel experiments have been carried out to verify the proposed tracker and controller through pipe tracking and target grasp on the basis of designed open frame underwater vehicle.
In order to mimic the natural appearance, motion, and perception of the human hand, a biomechatronic approach to design an anthropomorphic prosthetic hand À À À HIT/DLR Prosthetic Hand has been presented. It reproduces human hand in its fundamental structure such as appearance, weight, and dimensions. Its thumb can move along a cone surface in 3D space. Similar with that of human's, it combines with abduction and adduction from palmar position to lateral position. Actuated by only one motor, the middle¯nger, ring¯nger, and little¯nger can envelop complex-shaped objects. In addition, the bio-mechatronic integration and cosmetic designation make it much more like a genuine human hand.HIT/DLR Prosthetic Hand can be controlled through voice control strategy, Electromyography (EMG) control strategy, EMG, and electrocutaneous sensory feedback (ESF) close loop control strategy. In EMG control system, 10 types of hand posture are recognized through six electrodes on the basis of support vector machine (SVM). The last control strategy can help an amputee recover the grasp perception, further improve the e±ciency of EMG control, and reduce the hand mis-manipulation and force delivery mistakes.
Congenital heart diseases (CHD) are a large group of prevalent and complex anatomic malformations of the heart, with the genetic basis remaining largely unknown. Since genes or factors associated with the differentiation of human embryonic stem (HES) cells would affect the development of all embryonic tissues, including cardiac progenitor cells, we postulated their potential roles in CHD. In this study, we focused on ZW10, a kinetochore protein involved in the process of proper chromosome segregation, and conducted comparative studies between CHD patients and normal controls matched in gender and age in Chinese Han populations. We identified three variations in the ZW10 gene, including rs2885987, rs2271261 and rs2459976, which all had high genetic heterozygosity. Association analysis of these genetic variations with CHD showed correlation between rs2459976 and the risk of CHD. We conclude that rs2459976 in the ZW10 gene is associated with CHD in Chinese Han populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.