Recycling countercurrent chromatography was successfully applied to the resolution of 2-(4-bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti-inflammatory drug loxoprofen, using hydroxypropyl-β-cyclodextrin as chiral selector. The two-phase solvent system composed of n-hexane/n-butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β-cyclodextrin, concentration of hydroxypropyl-β-cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2-(4-bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high-performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8-65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti-inflammatory drug loxoprofen by countercurrent chromatography and high-performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far.
Four stereoisomeric components were produced during the synthesis of the antidepressant drug (1S, 4S)‐sertraline hydrochloride due to the two chiral carbon centers in its chemical structure, including (1S, 4S), (1R, 4R), (1S, 4R), and (1R, 4S)‐isomer. Stereoselective separation of the target isomer (1S, 4S)‐sertraline from the medicinal reaction mixtures by countercurrent chromatography using hydroxypropyl‐β‐cyclodextrin as the stereoselective selector was investigated. A biphasic solvent system composed of n‐hexane/0.20 mol/L phosphate buffer solution with pH 7.6 containing 0.10 mol/L of hydroxypropyl‐β‐cyclodextrin (1:1, v/v) was selected for separation of cis‐sertraline and trans‐sertraline using reverse phase elution mode and (1S, 4S)‐sertraline was separated with (1R, 4R)‐sertraline using recycling elution mode. A fabricated in‐house analytical countercurrent chromatographic apparatus was used for optimization of the separation conditions. Stationary phase retention and peak resolution were investigated for separation of cis‐sertraline and trans‐sertraline by the analytical apparatus.
Off-line comprehensive two-dimensional reversed-phase countercurrent chromatography with high-performance liquid chromatography was investigated in separation of crude ethanol extract from traditional Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc. Two-dimensional contour plots for countercurrent chromatography with high-performance liquid chromatography was obtained after comprehensive separation was completed. Total peak capacity was evaluated and approximately 810 peaks were obtained through a comprehensive two-dimensional separation. A highly orthogonality of 52.23% and a large separation space occupancy of 88.86% were achieved.Meanwhile, it was found that several components could be well separated by countercurrent chromatography while they could not be separated by high-performance liquid chromatography, and vice versa, which further indicated the orthogonality of the two separation methods. The off-line comprehensive two-dimensional countercurrent chromatography with high-performance liquid chromatography provided a promising and powerful method for separation of complex natural products.
K E Y W O R D Scountercurrent chromatography, comprehensive two-dimensional chromatography, high performance liquid chromatography, orthogonality, traditional Chinese medicine
Acetyltropic acid is an important synthetic intermediate for preparation of tropane alkaloid derivatives, which can be used as anticholinergic drugs, deliriants, and stimulants. In the present work, acetyltropic acid was successfully enantioseparated by countercurrent chromatography using sulfobutyl ether-β-cyclodextrin as chiral selector. A biphasic solvent system composed of n-butyl acetate/n-hexane/0.1 mol/L citrate buffer at pH = 2.2 containing 0.1 mol/L of sulfobutyl ether-β-cyclodextrin (7:3:10, v/v) was selected, which produced a suitable distribution ratio D S = 1.14, D R = 2.31 and a high enantioseparation factor α = 2.03. Baseline separation was achieved for preparative enantioseparation of 50 mg of racemic acetyltropic acid. A method for chiral analysis of acetyltropic acid by conventional reverse phase liquid chromatography with hydroxylpropyl-β-cyclodextrin as mobile phase additive was established, and formation constants of inclusion complex were determined. It was found that different substituted β-cyclodextrin should be selected for enantioseparation of acetyltropic acid by countercurrent chromatography and reverse phase liquid chromatography.
K E Y W O R D Sacetyltropic acid, countercurrent chromatography, cyclodextrins, enantioseparation, liquid chromatography J Sep Sci 2020;43:681-688.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.