Although solution-based synthesis is the most powerful and economic method to create nanostructured anatase TiO(2), under those synthesis conditions the {101} facets are the most thermodynamically stable, making it difficult to create anatase nanomaterials with a large percentage of high-energy {001} or {010} facets exposed. Here, we report a facile nonaqueous synthetic route to prepare anatase nanosheets with exposed {001} facets and high-quality rhombic-shaped anatase nanocrystals with a large percentage of exposed {010} facets. Including adscititious water in the nonaqueous synthesis and eliminating the use of carboxylic acid type capping agents are the two keys to integrating the structural diversity from aqueous systems into large-quantity synthesis in nonaqueous systems. The nanostructured TiO(2) that we prepared exhibits conspicuous activity in the photocatalytic degradation of organic contaminants.
Since December 2019, an increasing number of cases of the 2019 novel coronavirus disease (COVID-19) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified in Wuhan, Hubei Province, China. Now, more cases have been reported in 200 other countries and regions. The pandemic disease not only affects physical health who suffered it, but also affects the mental health of the general population. This study aims to know about the impact of the COVID-19 epidemic on the health-related quality of life (HRQOL) of living using EQ-5D in general population in China. Methods An online-based survey was developed and participants were recruited via social media. The questionnaires included demographic and socioeconomic data, health status, the condition epidemic situation and EQ-5D scale. The relationships of all factors and the scores of EQ-5D were analyzed. Logistic regression model were used to the five health dimensions. Results The respondents obtained a mean EQ-5D index score of 0.949 and a mean VAS score of 85.52.The most frequently reported problem were pain/discomfort (19.0%) and anxiety/ depression (17.6%). Logistic regression models showed that the risk of pain/discomfort and anxiety/depression among people with aging, with chronic disease, lower income, epidemic effects, worry about get COVID-19 raised significantly. Conclusion The article provides important evidence on HRQOL during the COVID-19 pandemic. The risk of pain/discomfort and anxiety/depression in general population in China raised significantly with aging, with chronic disease, lower income, epidemic effects, worried about get
Efficiency simplified: A synthetic strategy has been developed to prepare single-crystalline hollow Pd/Pt nanocubes (right, see picture; left: nanocubes). Compared to the solid Pd/Pt nanocubes of similar sizes, the hollow Pd/Pt nanocubes increase accessible surface area and therefore improve electrocatalytic activity in formic acid oxidation.
Yolk–shell catalytic nanoreactors with sub‐10‐nm Au nanoparticles and a mesoporous ZrO2 or TiO2 shell are prepared from monodisperse hydrophobic Au nanoparticles through an assembly approach (see image). The nanoreactors demonstrate both a remarkable catalytic activity and anti‐aggregation properties upon thermal treatment and recycling.
The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of protein-rich enoki mushroom (Flammulina velutipes) biomass at 900 °C with carbon nanotubes as a conductive agent and inserting matrix. We found that various forms of nitrogen (nitrile, pyrrolic and graphitic) were incorporated into the carbon molecular skeleton of the product, which exhibited more excellent ORR electrocatalytic activity and better durability in alkaline medium than those in acidic medium. Remarkably, the ORR half-wave potential measured on our material was around 0.81 V in alkaline medium, slightly lower than that on the commercial 20 wt% Pt/C catalyst (0.86 V). Meanwhile, the ORR followed the desired 4-electron transfer mechanism involving the direct reduction pathway. The ORR performance was also markedly better than or at least comparable to the leading results in the literature based on biomass-derived carbon-based catalysts. Besides, we significantly proposed that the graphitic-nitrogen species that is most responsible for the ORR activity can function as the electrocatalytically active center for ORR, and the pyrrolic-nitrogen species can act as an effective promoter for ORR only. The results suggested a promising route based on economical and sustainable fungi biomass towards the large-scale production of valuable carbon nanomaterials as highly active and stable metal-free catalysts for ORR under alkaline conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.