Significance This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the United States. Results show high variation in accuracy between and within stand-alone models and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public-health action.
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multi-model ensemble forecast that combined predictions from dozens of different research groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-week horizon 3-5 times larger than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. Significance Statement This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the US. Results show high variation in accuracy between and within stand-alone models, and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public health action.
BackgroundThe aim of this study was to determine the need for supportive care among women suffering from breast cancer in China and to identify its potential determinants to inform the development of effective and efficient healthcare services across different settings.Material/MethodsIn a tertiary-care hospital in Weifang, China, between July 2015 and January 2016, all women attending the Breast Cancer Clinic for regular physical examinations after treatment for breast cancer were consecutively recruited. The 34-item Supportive Care Needs Survey tool (Chinese version) (SCNS-SF34-C) was used to assess the unmet needs among participants.ResultsAmong 264 recruited patients, based on at least single-item endorsement, 60.2% had moderate to high level of need for supportive care, while only 13.3% expressed no need. Lack of information regarding health systems was the most common domain with moderate to high unmet needs, more so among rural patients (8 vs. 5 out of 10). In each information-related domain, huge unmet need was observed among all patients irrespective of urban or rural residence. Both overall and individual information-related domain-specific unmet needs were significantly higher among rural patients as opposed to their urban counterparts. Multiple regression analyses revealed a significant rural-urban variation of unmet needs. Moreover, education and post-diagnosis time duration were negatively associated with unmet needs while stage of cancer was positively associated with these unmet needs.ConclusionsThere is a huge burden of unmet needs for information on the healthcare system among breast cancer survivors in China. Rural residence, less education, advanced stage of cancer, and shorter duration since diagnosis were the identified determinants requiring targeted intervention.
Nowadays, it is common for one natural person to join multiple social networks to enjoy different kinds of services. Linking identical users across multiple social networks, also known as social network alignment, is an important problem of great research challenges. Existing methods usually link social identities on the pairwise sample level, which may lead to undesirable performance when the number of available annotations is limited. Motivated by the isomorphism information, in this paper we consider all the identities in a social network as a whole and perform social network alignment from the distribution level. The insight is that we aim to learn a projection function to not only minimize the distance between the distributions of user identities in two social networks, but also incorporate the available annotations as the learning guidance. We propose three models SNNAu, SNNAb and SNNAo to learn the projection function under the weakly-supervised adversarial learning framework. Empirically, we evaluate the proposed models over multiple datasets, and the results demonstrate the superiority of our proposals.
Deep neural networks (DNNs) can fit (or even over-fit) the training data very well. If a DNN model is trained using data with noisy labels and tested on data with clean labels, the model may perform poorly. This paper studies the problem of learning with noisy labels for sentence-level sentiment classification. We propose a novel DNN model called NETAB (as shorthand for convolutional neural NETworks with AB-networks) to handle noisy labels during training. NETAB consists of two convolutional neural networks, one with a noise transition layer for dealing with the input noisy labels and the other for predicting 'clean' labels. We train the two networks using their respective loss functions in a mutual reinforcement manner. Experimental results demonstrate the effectiveness of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.