The increasing complexity and size of digital designs, in conjunction with the lack of a potent verification methodology that can effectively cope with this trend, continue to inspire engineers and academics in seeking ways to further automate design verification. In an effort to increase performance and to decrease engineering effort, research has turned to artificial intelligence (AI) techniques for effective solutions. The generation of tests for simulation-based verification can be guided by machine-learning techniques. In fact, recent advances demonstrate that embedding machine-learning (ML) techniques into a coverage-directed test generation (CDG) framework can effectively automate the test generation process, making it more effective and less error-prone. This article reviews some of the most promising approaches in this field, aiming to evaluate the approaches and to further stimulate more directed research in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.