a b s t r a c tGenetic analysis was carried out in order to provide insights into differentiation among populations of two interfertile oak species, Quercus petraea and Quercus robur. Gene flow between the two species, local adaptation and speciation processes in general, may leave differential molecular signatures across the genome. Three interspecific pairs of natural populations from three ecologically different regions, one in central Europe (SW Germany) and two in the Balkan Peninsula (Greece and Bulgaria) were sampled. Grouping of highly informative SSR loci was made according to the component of variation they express-interspecific or provenance specific. 'Species' and 'provenance discriminant' loci were characterized based on F ST s. Locus specific F ST s were tested for deviation from the neutral expectation both within and between species. Data were then treated separately in a Bayesian analysis of genetic structure. By using three 'species discriminant' loci, high membership probability to inferred species groups was achieved. On the other hand, analysis of genetic structure based on five 'provenance discriminant' loci was correlated with geographic region and revealed shared genetic variation between neighbouring Q. petraea and Q. robur. Small sets of highly variable nuclear SSRs were sufficient to discriminate, either between species or between provenances. Thus, an effective tool is provided for molecular identification of both species and provenances. Furthermore, data suggest that a combination of gene flow and natural selection forms these diversity patterns. 'Species discriminant' loci might represent genome regions affected by directional selection, which maintains species identity. 'Provenance specific' loci might represent genome regions with high interspecific gene flow and common adaptive patterns to local environmental factors.
Purpose of Review Non-native tree species (NNT) raise a range of different associations and emotions—to many citizens they are just an exotic curiosity in parks, to many conservationists they are an evil to native ecosystems that should be eradicated, to a rising group of foresters they are part of the solution to climate change and an increasing timber demand, and to others they are already daily forestry business. In this review, where we also summarise the findings of the recent COST Action FP1403 (NNEXT) ‘Non-native tree species for European forests: experiences, risks and opportunities’, we highlight opportunities and challenges in the light of climate change, ecological risks and legislative limits of growing non-native tree species in Europe. Recent Findings Few NNT in Europe show invasive behaviour and are listed as prohibited species or as species to be monitored. A larger number of NNT is utilised in productive forestry and forest restoration due to their superior growth, valuable timber properties and good performance under harsh growing conditions. Current species distribution, experiences with success and failures and environmental concerns differ profoundly across Europe, with Western Europe overall revealing higher shares in NNT and showing a stronger interest of forestry related stakeholder groups to continue planting NNT. Summary Many more NNT are already used in forestry than previously thought, but relatively few species have major importance in terms of area, mainly in western European countries. Diversification, mixing and avoidance of invasion in relation to NNT are necessities that are relatively new on the agenda. In contrast, provenance research of major NNT has been going on for many decades and now provides important information for climate change adaptation. Despite the limitations to the use of NNT either through legal restrictions or forest certification that differ considerably across Europe, the careful integration of a range of tested NNT also into future forest management planning shows a high potential for climate change adaptation and mitigation.
Since the nineteenth century, Douglas-fir seed sources have been widely used for establishment of forest stands outside its natural distribution range. In Europe, some of these old Douglas-fir stands are registered as seed stands and provide seed sources for nurseries, although it is unclear from which region in North America they originate. In recent years, the interest in planting Douglas-fir has increased substantially because the species is seen as a potential adaptation option to climate change. This makes the assignment of European Douglas-fir stands of unknown seed origin to their geographic origin in North America increasingly important, because the genetic quality of these plantations must be guaranteed. In this study, we use 13 nuSSR loci to investigate the origin of 67 Austrian and German Douglas-fir stands of unknown origin. We performed a hierarchical Bayesian cluster analysis using 38 native Douglas-fir populations. The resulting clusters are used as reference populations to assign the 67 Central European Douglas-fir stands from Austria and Germany planted more than 80 years ago. Our results suggest that the majority of our investigated Douglas-fir stands come from central Washington (USA), the recommended seed zones for Central Europe. Some stands were located outside the suggested area, e.g. central Oregon and Santa Fe (New Mexico). The accuracy assessment of our approach revealed the best performance for the highest hierarchical level, e.g. assigning populations either to the coastal or the Rocky Mountain variety. As expected, the uncertainty increases with decreasing hierarchical level. The final assessment, if an admixture of seed sources within the European Douglas-fir stands is evident suggests that 23 of the Douglas-fir stands show an admixture which was not detected in our Douglas-fir reference populations growing in the natural distribution range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.