Abstract-Dynamic Searchable Symmetric Encryption (DSSE) enables a client to encrypt his document collection in a way that it is still searchable and efficiently updatable. However, all DSSE constructions that have been presented in the literature so far come with several problems: Either they leak a significant amount of information (e.g., hashes of the keywords contained in the updated document) or are inefficient in terms of space or search/update time (e.g., linear in the number of documents).In this paper we revisit the DSSE problem. We propose the first DSSE scheme that achieves the best of both worlds, i.e., both small leakage and efficiency. In particular, our DSSE scheme leaks significantly less information than any other previous DSSE construction and supports both updates and searches in sublinear time in the worst case, maintaining at the same time a data structure of only linear size. We finally provide an implementation of our construction, showing its practical efficiency.
As storage-outsourcing services and resource-sharing networks have become popular, the problem of efficiently proving the integrity of data stored at untrusted servers has received increased attention. In the provable data possession (PDP) model, the client preprocesses the data and then sends it to an untrusted server for storage, while keeping a small amount of meta-data. The client later asks the server to prove that the stored data has not been tampered with or deleted (without downloading the actual data). However, the original PDP scheme applies only to static (or append-only) files.We present a definitional framework and efficient constructions for dynamic provable data possession (DPDP), which extends the PDP model to support provable updates to stored data. We use a new version of authenticated dictionaries based on rank information. The price of dynamic updates is a performance change from O(1) to O(log n) (or O(n ϵ log n)), for a file consisting of n blocks, while maintaining the same (or better, respectively) probability of misbehavior detection. Our experiments show that this slowdown is very low in practice (e.g., 415KB proof size and 30ms computational overhead for a 1GB file). We also show how to apply our DPDP scheme to outsourced file systems and version control systems (e.g., CVS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.