In this article, we present the thermo-mechanical analysis of an electron paramagnetic resonance (EPR) probe operating at cryogenic temperatures using finite element analysis. Thermo-mechanical analysis plays a key role in the mechanical design evaluation process as EPR probes are often subjected to large stresses under such extreme conditions. For simplification, we assume thermal conduction to be the dominant mode of heat transfer over convection and radiation. The simulation model consists of a cryostat-probe assembly with appropriate thermal and structural boundary conditions. The predicted temperature distributions from the steady-state thermal analysis is then used for the stress analysis of the EPR probe. The stress analysis indicated that stresses in the EPR probe are below the ultimate strengths of each component, and thus safe for running EPR experiments. Furthermore, the simulation results were confirmed experimentally, and we found that the predicted heat losses for the EPR probe assembly and the sample holder are in excellent agreement with the experimental measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.