Tomographic diffractive microscopy is a three-dimensional imaging technique that reconstructs the permittivity map of the probed sample from its scattered field, measured both in phase and in amplitude. Here, we detail how polarization-resolved measurements permit us to significantly improve the accuracy and the resolution of the reconstructions, compared to the conventional scalar treatments used so far. An isotropic transverse resolution of about 100 nm at a wavelength of 475 nm is demonstrated using this approach.
Tomographic diffractive microscopy is a marker-free optical digital imaging technique in which three-dimensional samples are reconstructed from a set of holograms recorded under different angles of incidence. We show experimentally that, by processing the holograms with singular value decomposition, it is possible to image objects in a noisy background that are invisible with classical wide-field microscopy and conventional tomographic reconstruction procedure. The targets can be further characterized with a selective quantitative inversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.