Lebanon has experienced serious water scarcity issues recently, despite being one of the wealthiest countries in the Middle East for water resources. A large fraction of the water resources originates from the melting of the seasonal snow on Mount Lebanon. Therefore, continuous and systematic monitoring of the Lebanese snowpack is becoming crucial. The top of Mount Lebanon is punctuated by karstic hollows named sinkholes, which play a key role in the hydrological regime as natural snow reservoirs. However, monitoring these natural snow reservoirs remains challenging using traditional in situ and remote sensing techniques. Here, we present a new system in monitoring the evolution of the snowpack volume in a pilot sinkhole located in Mount Lebanon. The system uses three compact time-lapse cameras and photogrammetric software to reconstruct the elevation of the snow surface within the sinkhole. The approach is validated by standard topographic surveys. The results indicate that the snow height can be retrieved with an accuracy between 20 and 60 cm (residuals standard deviation) and a low bias of 50 cm after co-registration of the digital elevation models. This system can be used to derive the snowpack volume in the sinkhole on a daily basis at low cost.
Abstract. In Lebanon, the seasonal snowpack is poorly monitored despite its importance for water resource supply. The snow accumulates on Mount Lebanon in karstic depressions named “sinkholes.” It is important to monitor the evolution of the snow height inside those “sinkholes”, because of their key role as “containers” for seasonal snow. UAV photogrammetry is a major technological breakthrough which allows an accurate monitoring of the snow height. Because the impact of flight parameters on snow height retrievals is not well documented yet, this research aims to evaluate the impact of UAV flight altitude on the resolution and accuracy of the resulting orthomosaic and DSM. The flight missions were done using the Phantom DJI which generated five DSMs. These are validated using total station measurements.The results indicate that the snow DSMs can be retrieved by adopting a resolution of 8 to 84 cm, a point density between 1.43 and 153 points/sqm and a RMSE of 13 to 41 cm. The testing was done using an elevation varying between 50 and 500 m. The results will be compared to total station observations. These results allow the user to choose the suitable flight altitude for required resolution and points density. We suggest that a flight altitude of 100 m is sufficient for the survey of the snow cover elevation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.