International audienceThis paper describes a level set framework for the full field modeling of dynamic and post-dynamic recrystallization in a 3D polycrystalline material with an accurate description of grains topology at large deformation and application to 304L austenitic stainless steel. Topological evolutions are simulated based on a kinetic law linking the velocity of the boundaries to the thermodynamic driving forces. Recrystallization is modeled by coupling a level set approach to phenomenological laws describing strain hardening mechanism and nucleation criteria. Although the proposed formalism does not consider crystal plasticity because of its computational costs, it enables to reach outstanding dynamic recrystallization computations in a front-capturing finite element framework comparatively to the state of art
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.