Regulation of transforming growth factor-β (TGF-β) signaling is critical in vertebrate development, as several members of the TGF-β family have been shown to act as morphogens, controlling a variety of cell fate decisions depending on concentration. Little is known about the role of intracellular regulation of the TGF-β pathway in development. E3 ubiquitin ligases target specific protein substrates for proteasome-mediated degradation, and several are implicated in signaling. We have shown that Arkadia, a nuclear RING-domain E3 ubiquitin ligase, is essential for a subset of Nodal functions in the embryo, but the molecular mechanism of its action in embryonic cells had not been addressed. Here, we find that Arkadia facilitates Nodal signaling broadly in the embryo, and that it is indispensable for cell fates that depend on maximum signaling. Loss of Arkadia in embryonic cells causes nuclear accumulation of phospho-Smad2/3 (P-Smad2/3), the effectors of Nodal signaling; however, these must be repressed or hypoactive as the expression of their direct target genes is reduced or lost. Molecular and functional analysis shows that Arkadia interacts with and ubiquitinates P-Smad2/3 causing their degradation, and that this is via the same domains required for enhancing their activity. Consistent with this dual function, introduction of Arkadia in homozygous null (−/−) embryonic stem cells activates the accumulated and hypoactive P-Smad2/3 at the expense of their abundance. Arkadia−/− cells, like Smad2−/− cells, cannot form foregut and prechordal plate in chimeras, confirming this functional interaction in vivo. As Arkadia overexpression never represses, and in some cells enhances signaling, the degradation of P-Smad2/3 by Arkadia cannot occur prior to their activation in the nucleus. Therefore, Arkadia provides a mechanism for signaling termination at the end of the cascade by coupling degradation of P-Smad2/3 with the activation of target gene transcription. This mechanism can account for achieving efficient and maximum Nodal signaling during embryogenesis and for rapid resetting of target gene promoters allowing cells to respond to dynamic changes in extracellular signals.
Cdt1 and its inhibitor Geminin are important regulators of replication licensing. In normal cells, a critical balance between these two proteins ensures that firing of each origin along the genome will take place only once per cell cycle. Cdt1 overexpression in cell lines and animals leads to aberrant replication, activates DNA damage checkpoints and predisposes for malignant transformation. Geminin inactivation mimics the effects of Cdt1 overexpression in cells and generates mitotic defects and abnormal chromosome segregation. Aberrant expression of Cdt1 and Geminin is thus linked to DNA replication defects, aneuploidy and genomic instability. These traits are considered integral to precancerous states and essential elements for malignant transformation. Moreover, Cdt1 and Geminin expression is deregulated in human tumor specimens and Cdt1 and Geminin may represent novel markers useful for cancer diagnosis and prognosis.
Human diploid fibroblasts (HDFs) exposed to subcytotoxic stresses under H2O2, tert-butylhydroperoxide (t-BHP), and ethanol (EtOH) undergo stress-induced premature senescence (SIPS) characterized by many biomarkers of HDFs replicative senescence. Among these biomarkers are a growth arrest, an increase in the senescence-associated beta-galactosidase activity, a senescent morphology, an overexpression of p21waf-1 and the subsequent inability to phosphorylate pRb, the presence of the common 4977-bp mitochondrial deletion, and an increase in the steady-state level of several senescence-associated genes such as apolipoprotein J (apo J). Apo J has been described as a survival gene against cytotoxic stress. In order to study whether apo J would be protective against cytotoxicity SIPS and replicative senescence in human fibroblasts, a full-length complementary deoxyribonucleic acid of apo J was transfected into WI-38 HDFs and SV40-transformed WI-38 HDFs. The overexpression of apo J resulted in an increased cell survival after t-BHP and EtOH stresses at cytotoxic concentrations. In addition, when WI-38 HDFs were exposed to 5 subcytotoxic stresses with EtOH or t-BHP, in conditions that were previously shown to induce SIPS, a lower induction of 2 biomarkers of SIPS was observed in HDFs overexpressing apo J. No effect of apo J overexpression was observed on the proliferative life span of HDFs, even if apo J overexpression triggered osteonectin (SPARC) overexpression, which was shown to decrease the mitogenic potential of platelet-derived growth factor but not of other common growth-inducing conditions. Apo J senescence-related overexpression is proposed to have antiapoptotic rather than antiproliferative effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.