Summary
The space environment is still challenging but is becoming more and more attractive for an increasing number of entities. In the second half of the 20th century, a huge amount of funds was required to build satellites and gain access to space. Nowadays, it is no longer so. The advancement of technologies allows producing very small hardware components able to survive the strict conditions of the outer space. Consequently, small satellites can be designed for a wide set of missions keeping low design times, production costs, and deployment costs. One widely used type of small satellite is the CubeSat, whose different aspects are surveyed in the following: mission goals, hardware subsystems and components, possible network topologies, channel models, and suitable communication protocols. We also show some future challenges related to the employment of CubeSat networks.
This paper deals with the problem of precoding, scheduling and link adaptation in next generation mobile interactive multibeam satellite systems. In contrast to the fixed satellite services, when the user terminals move across the coverage area, additional challenges appear. Due to the time varying channel, the gateway has only access to a delayed version of the channel state information (CSI) which can eventually limit the overall system performance. However, in contrast to general multiuser multipleinput-multiple-output terrestrial systems, the CSI degradation in multibeam mobile applications has a very limited impact for typical fading channel and system assumptions. Under realistic conditions, the numerical results show that precoding can offer an attractive gain in the system throughput compared to conservative frequency reuse allocations.
Next generation communication networks incorporate Land Mobile Satellite (LMS) systems in order to provide greater areas of coverage and higher throughput for specific applications. Cooperation between satellite communication networks and terrestrial relays is or increasing the system's performance and availability. In this paper, the outage performance of a cooperative hybrid satellite and terrestrial system configuration is analytically evaluated assuming that the satellite links suffer from shadowed Rician fading, while the terrestrial link suffers from the Nakagami-m fading. Two cooperative relaying strategies are examined and the final formulas for the calculation of the outage probability are given. Moreover, a block diagram for the generation of time series for the reliable simulations of the outage probability of the cooperative hybrid land mobile satellite systems is given. The theoretical results and the simulation results almost coincide. Moreover, extended numerical results investigate the impact, of different shadowing conditions and more generally of the satellite links elevation angles, on the overall cooperative LMS system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.