In this work we are addressing the problem of statistical modeling of the joint distribution of data collected from wind turbines interacting due to collective effect of their placement in a wind-farm, the wind characteristics (speed/orientation) and the turbine control. Operating wind turbines extract energy from the wind and at the same time produce wakes on the down-wind turbines in a park, causing reduced power production and increased vibrations, potentially contributing in a detrimental manner to fatigue life. This work presents a Variational Auto-Encoder (VAE) Neural Network architecture capable of mapping the high dimensional correlated stochastic variables over the wind-farm, such as power production and wind speed, to a parametric probability distribution of much lower dimensionality. We demonstrate how a trained VAE can be used in order to quantify levels of statistical deviation on condition monitoring data. Moreover, we demonstrate how the VAE can be used for pretraining an inference model, capable of predicting the power production of the farm together with bounds on the uncertainty of the predictions. Examples employing simulated wind-farm Supervisory Control And Data Acquisition (SCADA) data are presented. The simulated farm data are acquired from a Dynamic Wake Meandering (DWM) simulation of a small wind farm comprised of nine 5MW turbines in close spacing using OpenFAST. The contribution of this work lies in the introduction of state-of-the-art machine learning techniques in the general context of condition monitoring and uncertainty quantification. We show how the high dimensional joint probability distribution of condition monitoring parameters can be analyzed by exploiting the underlying lower dimensional structure of the data imposed by the physics of the problem. The process of making use of the trained joint distribution for the purposes of inference under uncertainty and condition monitoring is clearly exposed.
Wind turbine fatigue estimation is based on time‐consuming Monte Carlo simulations for various wind conditions, followed by cycle‐counting procedures and the application of engineering damage models. The outputs of the fatigue simulations are large in volume and of high dimensionality, as they typically consist of estimates on finite‐element computational meshes. The strain and stress tensor time series, which are the primary quantities of interest when considering the problem of fatigue estimation, are dictated by complex vibration characteristics due to the coupled effect of aerodynamics, structural dynamics, geometrically non‐linear mechanics, and control. A Variational Auto‐Encoder (VAE) is trained in order to model the probability distribution of the accumulated fatigue on the root cross‐section of a simulated wind turbine blade. The VAE is conditioned on historical data that correspond to coarse wind‐field measurement statistics, such as mean hub‐height wind speed, standard deviation of hub‐height wind speed and shear exponent. In the absence of direct measurements of structural loads, the proposed technique finds applications in making long‐term probabilistic deterioration predictions from historical Supervisory, Control, and Data Acquisition (SCADA) data, while capturing the inherent aleatoric uncertainty due to the incomplete information on strain time series of the wind turbine structure, when only SCADA data statistics are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.